3 resultados para Traditional irrigation system
em Ecology and Society
Resumo:
Conventional wisdom in many agricultural systems across the world is that farmers cannot, will not, or should not pay the full costs associated with surface water delivery. Across Organisation for Economic Co-operation and Development (OECD) countries, only a handful can claim complete recovery of operation, maintenance, and capital costs; across Central and South Asia, fees are lower still, with farmers in Nepal, India, and Kazakhstan paying fractions of a U.S. penny for a cubic meter of water. In Pakistan, fees amount to roughly USD 1-2 per acre per season. However, farmers in Pakistan spend orders of magnitude more for diesel fuel to pump groundwater each season, suggesting a latent willingness to spend for water that, under the right conditions, could potentially be directed toward water-use fees for surface water supply. Although overall performance could be expected to improve with greater cost recovery, asymmetric access to water in canal irrigation systems leaves the question open as to whether those benefits would be equitably shared among all farmers in the system. We develop an agent-based model (ABM) of a small irrigation command to examine efficiency and equity outcomes across a range of different cost structures for the maintenance of the system, levels of market development, and assessed water charges. We find that, robust to a range of different cost and structural conditions, increased water charges lead to gains in both efficiency and concomitant improvements in equity as investments in canal infrastructure and system maintenance improve the conveyance of water resources further down watercourses. This suggests that, under conditions in which (1) farmers are currently spending money to pump groundwater to compensate for a failing surface water system, and (2) there is the possibility that through initial investment to provide perceptibly better water supply, genuine win-win solutions can be attained through higher water-use fees to beneficiary farmers.
Resumo:
In the past decades, social-ecological systems (SESs) worldwide have undergone dramatic transformations with often detrimental consequences for livelihoods. Although resilience thinking offers promising conceptual frameworks to understand SES transformations, empirical resilience assessments of real-world SESs are still rare because SES complexity requires integrating knowledge, theories, and approaches from different disciplines. Taking up this challenge, we empirically assess the resilience of a South African pastoral SES to drought using various methods from natural and social sciences. In the ecological subsystem, we analyze rangelands’ ability to buffer drought effects on forage provision, using soil and vegetation indicators. In the social subsystem, we assess households’ and communities’ capacities to mitigate drought effects, applying agronomic and institutional indicators and benchmarking against practices and institutions in traditional pastoral SESs. Our results indicate that a decoupling of livelihoods from livestock-generated income was initiated by government interventions in the 1930s. In the post-apartheid phase, minimum-input strategies of herd management were adopted, leading to a recovery of rangeland vegetation due to unintentionally reduced stocking densities. Because current livelihood security is mainly based on external monetary resources (pensions, child grants, and disability grants), household resilience to drought is higher than in historical phases. Our study is one of the first to use a truly multidisciplinary resilience assessment. Conflicting results from partial assessments underline that measuring narrow indicator sets may impede a deeper understanding of SES transformations. The results also imply that the resilience of contemporary, open SESs cannot be explained by an inward-looking approach because essential connections and drivers at other scales have become relevant in the globalized world. Our study thus has helped to identify pitfalls in empirical resilience assessment and to improve the conceptualization of SES dynamics.
Resumo:
Indigenous communities have actively managed their environments for millennia using a diversity of resource use and conservation strategies. Clam gardens, ancient rock-walled intertidal beach terraces, represent one example of an early mariculture technology that may have been used to improve food security and confer resilience to coupled human-ocean systems. We surveyed a coastal landscape for evidence of past resource use and management to gain insight into ancient resource stewardship practices on the central coast of British Columbia, Canada. We found that clam gardens are embedded within a diverse portfolio of resource use and management strategies and were likely one component of a larger, complex resource management system. We compared clam diversity, density, recruitment, and biomass in three clam gardens and three unmodified nonwalled beaches. Evidence suggests that butter clams (Saxidomus gigantea) had 1.96 times the biomass and 2.44 times the density in clam gardens relative to unmodified beaches. This was due to a reduction in beach slope and thus an increase in the optimal tidal range where clams grow and survive best. The most pronounced differences in butter clam density between nonwalled beaches and clam gardens were found at high tidal elevations at the top of the beach. Finally, clam recruits (0.5-2 mm in length) tended to be greater in clam gardens compared to nonwalled beaches and may be attributed to the addition of shell hash by ancient people, which remains on the landscape today. As part of a broader social-ecological system, clam garden sites were among several modifications made by humans that collectively may have conferred resilience to past communities by providing reliable and diverse access to food resources.