2 resultados para Coupled Elliptic System
em Ecology and Society
Resumo:
The resilience of a social-ecological system is measured by its ability to retain core functionality when subjected to perturbation. Resilience is contextually dependent on the state of system components, the complex interactions among these components, and the timing, location, and magnitude of perturbations. The stability landscape concept provides a useful framework for considering resilience within the specified context of a particular social-ecological system but has proven difficult to operationalize. This difficulty stems largely from the complex, multidimensional nature of the systems of interest and uncertainty in system response. Agent-based models are an effective methodology for understanding how cross-scale processes within and across social and ecological domains contribute to overall system resilience. We present the results of a stylized model of agricultural land use in a small watershed that is typical of the Midwestern United States. The spatially explicit model couples land use, biophysical models, and economic drivers with an agent-based model to explore the effects of perturbations and policy adaptations on system outcomes. By applying the coupled modeling approach within the resilience and stability landscape frameworks, we (1) estimate the sensitivity of the system to context-specific perturbations, (2) determine potential outcomes of those perturbations, (3) identify possible alternative states within state space, (4) evaluate the resilience of system states, and (5) characterize changes in system-scale resilience brought on by changes in individual land use decisions.
Resumo:
Indigenous communities have actively managed their environments for millennia using a diversity of resource use and conservation strategies. Clam gardens, ancient rock-walled intertidal beach terraces, represent one example of an early mariculture technology that may have been used to improve food security and confer resilience to coupled human-ocean systems. We surveyed a coastal landscape for evidence of past resource use and management to gain insight into ancient resource stewardship practices on the central coast of British Columbia, Canada. We found that clam gardens are embedded within a diverse portfolio of resource use and management strategies and were likely one component of a larger, complex resource management system. We compared clam diversity, density, recruitment, and biomass in three clam gardens and three unmodified nonwalled beaches. Evidence suggests that butter clams (Saxidomus gigantea) had 1.96 times the biomass and 2.44 times the density in clam gardens relative to unmodified beaches. This was due to a reduction in beach slope and thus an increase in the optimal tidal range where clams grow and survive best. The most pronounced differences in butter clam density between nonwalled beaches and clam gardens were found at high tidal elevations at the top of the beach. Finally, clam recruits (0.5-2 mm in length) tended to be greater in clam gardens compared to nonwalled beaches and may be attributed to the addition of shell hash by ancient people, which remains on the landscape today. As part of a broader social-ecological system, clam garden sites were among several modifications made by humans that collectively may have conferred resilience to past communities by providing reliable and diverse access to food resources.