4 resultados para Agricultural sustainability evaluation framework

em Ecology and Society


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Urban areas such as megacities (those with populations greater than 10 million) are hotspots of global water use and thus face intense water management challenges. Urban areas are influenced by local interactions between human and natural systems and interact with distant systems through flows of water, food, energy, people, information, and capital. However, analyses of water sustainability and the management of water flows in urban areas are often fragmented. There is a strong need to apply integrated frameworks to systematically analyze urban water dynamics and factors that influence these dynamics. We apply the framework of telecoupling (socioeconomic and environmental interactions over distances) to analyze urban water issues, using Beijing as a demonstration megacity. Beijing exemplifies the global water sustainability challenge for urban settings. Like many other cities, Beijing has experienced drastic reductions in quantity and quality of both surface water and groundwater over the past several decades; it relies on the import of real and virtual water from sending systems to meet its demand for clean water, and releases polluted water to other systems (spillover systems). The integrative framework we present demonstrates the importance of considering socioeconomic and environmental interactions across telecoupled human and natural systems, which include not only Beijing (the water-receiving system) but also water-sending systems and spillover systems. This framework helps integrate important components of local and distant human–nature interactions and incorporates a wide range of local couplings and telecouplings that affect water dynamics, which in turn generate significant socioeconomic and environmental consequences, including feedback effects. The application of the framework to Beijing reveals many research gaps and management needs. We also provide a foundation to apply the telecoupling framework to better understand and manage water sustainability in other cities around the world.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Policies and actions that come from higher scale structures, such as international bodies and national governments, are not always compatible with the realities and perspectives of smaller scale units including indigenous communities. Yet, it is at this local social-ecological scale that mechanisms and solutions for dealing with unpredictability and change can be increasingly seen emerging from across the world. Although there is a large body of knowledge specifying the conditions necessary to promote local governance of natural resources, there is a parallel need to develop practical methods for operationalizing the evaluation of local social-ecological systems. In this paper, we report on a systemic, participatory, and visual approach for engaging local communities in an exploration of their own social-ecological system. Working with indigenous communities of the North Rupununi, Guyana, this involved using participatory video and photography within a system viability framework to enable local participants to analyze their own situation by defining indicators of successful strategies that were meaningful to them. Participatory multicriteria analysis was then used to arrive at a short list of best practice strategies. We present six best practices and show how they are intimately linked through the themes of indigenous knowledge, local governance and values, and partnerships and networks. We highlight how developing shared narratives of community owned solutions can help communities to plan governance and management of land and resource systems, while reinforcing sustainable practices by discussing and showcasing them within communities, and by engendering a sense of pride in local solutions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Structuring integrated social-ecological systems (SES) research remains a core challenge for achieving sustainability. Numerous concepts and frameworks exist, but there is a lack of mutual learning and orientation of knowledge between them. We focus on two approaches in particular: the ecosystem services concept and Elinor Ostrom’s diagnostic SES framework. We analyze the strengths and weaknesses of each and discuss their potential for mutual learning. We use knowledge types in sustainability research as a boundary object to compare the contributions of each approach. Sustainability research is conceptualized as a multi-step knowledge generation process that includes system, target, and transformative knowledge. A case study of the Southern California spiny lobster fishery is used to comparatively demonstrate how each approach contributes a different lens and knowledge when applied to the same case. We draw on this case example in our discussion to highlight potential interlinkages and areas for mutual learning. We intend for this analysis to facilitate a broader discussion that can further integrate SES research across its diverse communities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tackling societal and environmental challenges requires new approaches that connect top-down global oversight with bottom-up subnational knowledge. We present a novel framework for participatory development of spatially explicit scenarios at national scale that model socioeconomic and environmental dynamics by reconciling local stakeholder perspectives and national spatial data. We illustrate results generated by this approach and evaluate its potential to contribute to a greater understanding of the relationship between development pathways and sustainability. Using the lens of land use and land cover changes, and engaging 240 stakeholders representing subnational (seven forest management zones) and the national level, we applied the framework to assess alternative development strategies in the Tanzania mainland to the year 2025, under either a business as usual or a green development scenario. In the business as usual scenario, no productivity gain is expected, cultivated land expands by ~ 2% per year (up to 88,808 km²), with large impacts on woodlands and wetlands. Despite legal protection, encroachment of natural forest occurs along reserve borders. Additional wood demand leads to degradation, i.e., loss of tree cover and biomass, up to 80,426 km² of wooded land. The alternative green economy scenario envisages decreasing degradation and deforestation with increasing productivity (+10%) and implementation of payment for ecosystem service schemes. In this scenario, cropland expands by 44,132 km² and the additional degradation is limited to 35,778 km². This scenario development framework captures perspectives and knowledge across a diverse range of stakeholders and regions. Although further effort is required to extend its applicability, improve users’ equity, and reduce costs the resulting spatial outputs can be used to inform national level planning and policy implementation associated with sustainable development, especially the REDD+ climate mitigation strategy.