2 resultados para Agricultural Production
em Ecology and Society
Resumo:
General knowledge of the small, invisible, or hidden organisms that make soil one of the most biodiverse habitats on Earth is thought to be scarce, despite their importance in food systems and agricultural production. We provide the first worldwide review of high-quality research that reports on farmers’ knowledge of soil organisms in agriculture. The depth of farmers’ knowledge varied; some farming communities held detailed local taxonomies and observations of soil biota, or used soil biological activity as indicators of soil fertility, while others were largely unaware of soil fauna. Elicitation of soil biota knowledge was often incidental to the main research goal in many of the reviewed studies. Farmers are rarely deliberately or deeply consulted by researchers on their existing knowledge of soil biota, soil ecology, or soil ecological processes. Deeper understanding of how farmers use and value soil life can lead to more effective development of collaborative extension programs, policies, and management initiatives directed at maintaining healthy, living soils.
Resumo:
Understanding complex social-ecological systems, and anticipating how they may respond to rapid change, requires an approach that incorporates environmental, social, economic, and policy factors, usually in a context of fragmented data availability. We employed fuzzy cognitive mapping (FCM) to integrate these factors in the assessment of future wildfire risk in the Chiquitania region, Bolivia. In this region, dealing with wildfires is becoming increasingly challenging because of reinforcing feedbacks between multiple drivers. We conducted semistructured interviews and constructed different FCMs in focus groups to understand the regional dynamics of wildfire from diverse perspectives. We used FCM modelling to evaluate possible adaptation scenarios in the context of future drier climatic conditions. Scenarios also considered possible failure to respond in time to the emergent risk. This approach proved of great potential to support decision making for risk management. It helped identify key forcing variables and generate insights into potential risks and trade-offs of different strategies. The “Hands-off” scenario resulted in amplified impacts driven by intensifying trends, affecting particularly the agricultural production under drought conditions. The “Fire management” scenario, which adopted a bottom-up approach to improve controlled burning, showed less trade-offs between wildfire risk reduction and production compared with the “Fire suppression” scenario. Findings highlighted the importance of considering strategies that involve all actors who use fire, and the need to nest these strategies for a more systemic approach to manage wildfire risk. The FCM model could be used as a decision-support tool and serve as a “boundary object” to facilitate collaboration and integration of different perceptions of fire in the region. This approach also has the potential to inform decisions in other dynamic frontier landscapes around the world that are facing increased risk of large wildfires.