7 resultados para whole of catchment
em Duke University
Resumo:
INTRODUCTION: Neurodegenerative diseases (NDD) are characterized by progressive decline and loss of function, requiring considerable third-party care. NDD carers report low quality of life and high caregiver burden. Despite this, little information is available about the unmet needs of NDD caregivers. METHODS: Data from a cross-sectional, whole of population study conducted in South Australia were analyzed to determine the profile and unmet care needs of people who identify as having provided care for a person who died an expected death from NDDs including motor neurone disease and multiple sclerosis. Bivariate analyses using chi(2) were complemented with a regression analysis. RESULTS: Two hundred and thirty respondents had a person close to them die from an NDD in the 5 years before responding. NDD caregivers were more likely to have provided care for more than 2 years and were more able to move on after the death than caregivers of people with other disorders such as cancer. The NDD caregivers accessed palliative care services at the same rate as other caregivers at the end of life, however people with an NDD were almost twice as likely to die in the community (odds ratio [OR] 1.97; 95% confidence interval [CI] 1.30 to 3.01) controlling for relevant caregiver factors. NDD caregivers reported significantly more unmet needs in emotional, spiritual, and bereavement support. CONCLUSION: This study is the first step in better understanding across the whole population the consequences of an expected death from an NDD. Assessments need to occur while in the role of caregiver and in the subsequent bereavement phase.
Resumo:
A novel approach is proposed to estimate the natural streamflow regime of a river and to assess the extent of the alterations induced by dam operation related to anthropogenic (e.g., agricultural, hydropower) water uses in engineered river basins. The method consists in the comparison between the seasonal probability density function (pdf) of observed streamflows and the purportedly natural streamflow pdf obtained by a recently proposed and validated probabilistic model. The model employs a minimum of landscape and climate parameters and unequivocally separates the effects of anthropogenic regulations from those produced by hydroclimatic fluctuations. The approach is applied to evaluate the extent of the alterations of intra-annual streamflow variability in a highly engineered alpine catchment of north-eastern Italy, the Piave river. Streamflows observed downstream of the regulation devices in the Piave catchment are found to exhibit smaller means/modes, larger coefficients of variation, and more pronounced peaks than the flows that would be observed in the absence of anthropogenic regulation, suggesting that the anthropogenic disturbance leads to remarkable reductions of river flows, with an increase of the streamflow variability and of the frequency of preferential states far from the mean. Some structural limitations of management approaches based on minimum streamflow requirements (widely used to guide water policies) as opposed to criteria based on whole distributions are also discussed. Copyright © 2010 by the American Geophysical Union.
Resumo:
BACKGROUND: There is considerable interest in the development of methods to efficiently identify all coding variants present in large sample sets of humans. There are three approaches possible: whole-genome sequencing, whole-exome sequencing using exon capture methods, and RNA-Seq. While whole-genome sequencing is the most complete, it remains sufficiently expensive that cost effective alternatives are important. RESULTS: Here we provide a systematic exploration of how well RNA-Seq can identify human coding variants by comparing variants identified through high coverage whole-genome sequencing to those identified by high coverage RNA-Seq in the same individual. This comparison allowed us to directly evaluate the sensitivity and specificity of RNA-Seq in identifying coding variants, and to evaluate how key parameters such as the degree of coverage and the expression levels of genes interact to influence performance. We find that although only 40% of exonic variants identified by whole genome sequencing were captured using RNA-Seq; this number rose to 81% when concentrating on genes known to be well-expressed in the source tissue. We also find that a high false positive rate can be problematic when working with RNA-Seq data, especially at higher levels of coverage. CONCLUSIONS: We conclude that as long as a tissue relevant to the trait under study is available and suitable quality control screens are implemented, RNA-Seq is a fast and inexpensive alternative approach for finding coding variants in genes with sufficiently high expression levels.
Resumo:
Recent emergence of human connectome imaging has led to a high demand on angular and spatial resolutions for diffusion magnetic resonance imaging (MRI). While there have been significant growths in high angular resolution diffusion imaging, the improvement in spatial resolution is still limited due to a number of technical challenges, such as the low signal-to-noise ratio and high motion artifacts. As a result, the benefit of a high spatial resolution in the whole-brain connectome imaging has not been fully evaluated in vivo. In this brief report, the impact of spatial resolution was assessed in a newly acquired whole-brain three-dimensional diffusion tensor imaging data set with an isotropic spatial resolution of 0.85 mm. It was found that the delineation of short cortical association fibers is drastically improved as well as the definition of fiber pathway endings into the gray/white matter boundary-both of which will help construct a more accurate structural map of the human brain connectome.
Resumo:
*Hydraulic redistribution (HR) of water via roots from moist to drier portions of the soil occurs in many ecosystems, potentially influencing both water use and carbon assimilation. *By measuring soil water content, sap flow and eddy covariance, we investigated the temporal variability of HR in a loblolly pine (Pinus taeda) plantation during months of normal and below-normal precipitation, and examined its effects on tree transpiration, ecosystem water use and carbon exchange. *The occurrence of HR was explained by courses of reverse flow through roots. As the drought progressed, HR maintained soil moisture above 0.15 cm(3) cm(-3) and increased transpiration by 30-50%. HR accounted for 15-25% of measured total site water depletion seasonally, peaking at 1.05 mm d(-1). The understory species depended on water redistributed by the deep-rooted overstory pine trees for their early summer water supply. Modeling carbon flux showed that in the absence of HR, gross ecosystem productivity and net ecosystem exchange could be reduced by 750 and 400 g C m(-2) yr(-1), respectively. *Hydraulic redistribution mitigated the effects of soil drying on understory and stand evapotranspiration and had important implications for net primary productivity by maintaining this whole ecosystem as a carbon sink.
Resumo:
Voltage-dependent membrane currents were studied in dissociated hepatocytes from chick, using the patch-clamp technique. All cells had voltage-dependent outward K+ currents; in 10% of the cells, a fast, transient, tetrodotoxin-sensitive Na+ current was identified. None of the cells had voltage-dependent inward Ca2+ currents. The K+ current activated at a membrane potential of about -10 mV, had a sigmoidal time course, and did not inactivate in 500 ms. The maximum outward conductance was 6.6 +/- 2.4 nS in 18 cells. The reversal potential, estimated from tail current measurements, shifted by 50 mV per 10-fold increase in the external K+ concentration. The current traces were fitted by n2 kinetics with voltage-dependent time constants. Omitting Ca2+ from the external bath or buffering the internal Ca2+ with EGTA did not alter the outward current, which shows that Ca2+-activated K+ currents were not present. 1-5 mM 4-aminopyridine, 0.5-2 mM BaCl2, and 0.1-1 mM CdCl2 reversibly inhibited the current. The block caused by Ba was voltage dependent. Single-channel currents were recorded in cell-attached and outside-out patches. The mean unitary conductance was 7 pS, and the channels displayed bursting kinetics. Thus, avian hepatocytes have a single type of K+ channel belonging to the delayed rectifier class of K+ channels.
Resumo:
Mitchell et al. argue that divergence-time estimates for our avian phylogeny were too young because of an "inappropriate" maximum age constraint for the most recent common ancestor of modern birds and that, as a result, most modern bird orders diverged before the Cretaceous-Paleogene mass extinction event 66 million years ago instead of after. However, their interpretations of the fossil record and timetrees are incorrect.