5 resultados para visual pattern recognition network

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although people do not normally try to remember associations between faces and physical contexts, these associations are established automatically, as indicated by the difficulty of recognizing familiar faces in different contexts ("butcher-on-the-bus" phenomenon). The present fMRI study investigated the automatic binding of faces and scenes. In the face-face (F-F) condition, faces were presented alone during both encoding and retrieval, whereas in the face/scene-face (FS-F) condition, they were presented overlaid on scenes during encoding but alone during retrieval (context change). Although participants were instructed to focus only on the faces during both encoding and retrieval, recognition performance was worse in the FS-F than in the F-F condition ("context shift decrement" [CSD]), confirming automatic face-scene binding during encoding. This binding was mediated by the hippocampus as indicated by greater subsequent memory effects (remembered > forgotten) in this region for the FS-F than the F-F condition. Scene memory was mediated by right parahippocampal cortex, which was reactivated during successful retrieval when the faces were associated with a scene during encoding (FS-F condition). Analyses using the CSD as a regressor yielded a clear hemispheric asymmetry in medial temporal lobe activity during encoding: Left hippocampal and parahippocampal activity was associated with a smaller CSD, indicating more flexible memory representations immune to context changes, whereas right hippocampal/rhinal activity was associated with a larger CSD, indicating less flexible representations sensitive to context change. Taken together, the results clarify the neural mechanisms of context effects on face recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As we look around a scene, we perceive it as continuous and stable even though each saccadic eye movement changes the visual input to the retinas. How the brain achieves this perceptual stabilization is unknown, but a major hypothesis is that it relies on presaccadic remapping, a process in which neurons shift their visual sensitivity to a new location in the scene just before each saccade. This hypothesis is difficult to test in vivo because complete, selective inactivation of remapping is currently intractable. We tested it in silico with a hierarchical, sheet-based neural network model of the visual and oculomotor system. The model generated saccadic commands to move a video camera abruptly. Visual input from the camera and internal copies of the saccadic movement commands, or corollary discharge, converged at a map-level simulation of the frontal eye field (FEF), a primate brain area known to receive such inputs. FEF output was combined with eye position signals to yield a suitable coordinate frame for guiding arm movements of a robot. Our operational definition of perceptual stability was "useful stability," quantified as continuously accurate pointing to a visual object despite camera saccades. During training, the emergence of useful stability was correlated tightly with the emergence of presaccadic remapping in the FEF. Remapping depended on corollary discharge but its timing was synchronized to the updating of eye position. When coupled to predictive eye position signals, remapping served to stabilize the target representation for continuously accurate pointing. Graded inactivations of pathways in the model replicated, and helped to interpret, previous in vivo experiments. The results support the hypothesis that visual stability requires presaccadic remapping, provide explanations for the function and timing of remapping, and offer testable hypotheses for in vivo studies. We conclude that remapping allows for seamless coordinate frame transformations and quick actions despite visual afferent lags. With visual remapping in place for behavior, it may be exploited for perceptual continuity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While genome-wide gene expression data are generated at an increasing rate, the repertoire of approaches for pattern discovery in these data is still limited. Identifying subtle patterns of interest in large amounts of data (tens of thousands of profiles) associated with a certain level of noise remains a challenge. A microarray time series was recently generated to study the transcriptional program of the mouse segmentation clock, a biological oscillator associated with the periodic formation of the segments of the body axis. A method related to Fourier analysis, the Lomb-Scargle periodogram, was used to detect periodic profiles in the dataset, leading to the identification of a novel set of cyclic genes associated with the segmentation clock. Here, we applied to the same microarray time series dataset four distinct mathematical methods to identify significant patterns in gene expression profiles. These methods are called: Phase consistency, Address reduction, Cyclohedron test and Stable persistence, and are based on different conceptual frameworks that are either hypothesis- or data-driven. Some of the methods, unlike Fourier transforms, are not dependent on the assumption of periodicity of the pattern of interest. Remarkably, these methods identified blindly the expression profiles of known cyclic genes as the most significant patterns in the dataset. Many candidate genes predicted by more than one approach appeared to be true positive cyclic genes and will be of particular interest for future research. In addition, these methods predicted novel candidate cyclic genes that were consistent with previous biological knowledge and experimental validation in mouse embryos. Our results demonstrate the utility of these novel pattern detection strategies, notably for detection of periodic profiles, and suggest that combining several distinct mathematical approaches to analyze microarray datasets is a valuable strategy for identifying genes that exhibit novel, interesting transcriptional patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our ability to track an object as the same persisting entity over time and motion may primarily rely on spatiotemporal representations which encode some, but not all, of an object's features. Previous researchers using the 'object reviewing' paradigm have demonstrated that such representations can store featural information of well-learned stimuli such as letters and words at a highly abstract level. However, it is unknown whether these representations can also store purely episodic information (i.e. information obtained from a single, novel encounter) that does not correspond to pre-existing type-representations in long-term memory. Here, in an object-reviewing experiment with novel face images as stimuli, observers still produced reliable object-specific preview benefits in dynamic displays: a preview of a novel face on a specific object speeded the recognition of that particular face at a later point when it appeared again on the same object compared to when it reappeared on a different object (beyond display-wide priming), even when all objects moved to new positions in the intervening delay. This case study demonstrates that the mid-level visual representations which keep track of persisting identity over time--e.g. 'object files', in one popular framework can store not only abstract types from long-term memory, but also specific tokens from online visual experience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is widely accepted that infants begin learning their native language not by learning words, but by discovering features of the speech signal: consonants, vowels, and combinations of these sounds. Learning to understand words, as opposed to just perceiving their sounds, is said to come later, between 9 and 15 mo of age, when infants develop a capacity for interpreting others' goals and intentions. Here, we demonstrate that this consensus about the developmental sequence of human language learning is flawed: in fact, infants already know the meanings of several common words from the age of 6 mo onward. We presented 6- to 9-mo-old infants with sets of pictures to view while their parent named a picture in each set. Over this entire age range, infants directed their gaze to the named pictures, indicating their understanding of spoken words. Because the words were not trained in the laboratory, the results show that even young infants learn ordinary words through daily experience with language. This surprising accomplishment indicates that, contrary to prevailing beliefs, either infants can already grasp the referential intentions of adults at 6 mo or infants can learn words before this ability emerges. The precocious discovery of word meanings suggests a perspective in which learning vocabulary and learning the sound structure of spoken language go hand in hand as language acquisition begins.