3 resultados para vendors
em Duke University
Resumo:
Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.
Resumo:
Introduction: Traditional medicines are one of the most important means of achieving total health care coverage globally, and their importance in Tanzania extends beyond the impoverished rural areas. Their use remains high even in urban settings among the educated middle and upper classes. They are a critical component healthcare in Tanzania, but they also can have harmful side effects. Therefore we sought to understand the decision-making and reasoning processes by building an explanatory model for the use of traditional medicines in Tanzania.
Methods: We conducted a mixed-methods study between December 2013 and June 2014 in the Kilimanjaro Region of Tanzania. Using purposive sampling methods, we conducted focus group discussions (FGDs) and in-depth interviews of key informants, and the qualitative data were analyzed using an inductive Framework Method. A structured survey was created, piloted, and then administered it to a random sample of adults. We reported upon the reliability and validity of the structured survey, and we used triangulation from multiple sources to synthesize the qualitative and quantitative data.
Results: A total of five FGDs composed of 59 participants and 27 in-depth interviews were conducted in total. 16 of the in-depth interviews were with self-described traditional practitioners or herbal vendors. We identified five major thematic categories that relate to the decision to use traditional medicines in Kilimanjaro: healthcare delivery, disease understanding, credibility of the traditional practices, health status, and strong cultural beliefs.
A total of 473 participants (24.1% male) completed the structured survey. The most common reasons for taking traditional medicines were that they are more affordable (14%, 12.0-16.0), failure of hospital medicines (13%, 11.1-15.0), they work better (12%, 10.7-14.4), they are easier
to obtain (11%, 9.48-13.1), they are found naturally or free (8%, 6.56-9.68), hospital medicines have too many chemical (8%, 6.33-9.40), and they have fewer side effects (8%, 6.25-9.30). The most common uses of traditional medicines were for symptomatic conditions (42%), chronic diseases (14%), reproductive problems (11%), and malaria and febrile illnesses (10%). Participants currently taking hospital medicines for chronic conditions were nearly twice as likely to report traditional medicines usage in the past year (RR 1.97, p=0.05).
Conclusions: We built broad explanatory model for the use of traditional medicines in Kilimanjaro. The use of traditional medicines is not limited to rural or low socioeconomic populations and concurrent use of traditional medicines and biomedicine is high with frequent ethnomedical doctor shopping. Our model provides a working framework for understanding the complex interactions between biomedicine and traditional medicine. Future disease management and treatment programs will benefit from this understanding, and it can lead to synergistic policies with more effective implementation.
Resumo:
X-ray computed tomography (CT) is a non-invasive medical imaging technique that generates cross-sectional images by acquiring attenuation-based projection measurements at multiple angles. Since its first introduction in the 1970s, substantial technical improvements have led to the expanding use of CT in clinical examinations. CT has become an indispensable imaging modality for the diagnosis of a wide array of diseases in both pediatric and adult populations [1, 2]. Currently, approximately 272 million CT examinations are performed annually worldwide, with nearly 85 million of these in the United States alone [3]. Although this trend has decelerated in recent years, CT usage is still expected to increase mainly due to advanced technologies such as multi-energy [4], photon counting [5], and cone-beam CT [6].
Despite the significant clinical benefits, concerns have been raised regarding the population-based radiation dose associated with CT examinations [7]. From 1980 to 2006, the effective dose from medical diagnostic procedures rose six-fold, with CT contributing to almost half of the total dose from medical exposure [8]. For each patient, the risk associated with a single CT examination is likely to be minimal. However, the relatively large population-based radiation level has led to enormous efforts among the community to manage and optimize the CT dose.
As promoted by the international campaigns Image Gently and Image Wisely, exposure to CT radiation should be appropriate and safe [9, 10]. It is thus a responsibility to optimize the amount of radiation dose for CT examinations. The key for dose optimization is to determine the minimum amount of radiation dose that achieves the targeted image quality [11]. Based on such principle, dose optimization would significantly benefit from effective metrics to characterize radiation dose and image quality for a CT exam. Moreover, if accurate predictions of the radiation dose and image quality were possible before the initiation of the exam, it would be feasible to personalize it by adjusting the scanning parameters to achieve a desired level of image quality. The purpose of this thesis is to design and validate models to quantify patient-specific radiation dose prospectively and task-based image quality. The dual aim of the study is to implement the theoretical models into clinical practice by developing an organ-based dose monitoring system and an image-based noise addition software for protocol optimization.
More specifically, Chapter 3 aims to develop an organ dose-prediction method for CT examinations of the body under constant tube current condition. The study effectively modeled the anatomical diversity and complexity using a large number of patient models with representative age, size, and gender distribution. The dependence of organ dose coefficients on patient size and scanner models was further evaluated. Distinct from prior work, these studies use the largest number of patient models to date with representative age, weight percentile, and body mass index (BMI) range.
With effective quantification of organ dose under constant tube current condition, Chapter 4 aims to extend the organ dose prediction system to tube current modulated (TCM) CT examinations. The prediction, applied to chest and abdominopelvic exams, was achieved by combining a convolution-based estimation technique that quantifies the radiation field, a TCM scheme that emulates modulation profiles from major CT vendors, and a library of computational phantoms with representative sizes, ages, and genders. The prospective quantification model is validated by comparing the predicted organ dose with the dose estimated based on Monte Carlo simulations with TCM function explicitly modeled.
Chapter 5 aims to implement the organ dose-estimation framework in clinical practice to develop an organ dose-monitoring program based on a commercial software (Dose Watch, GE Healthcare, Waukesha, WI). In the first phase of the study we focused on body CT examinations, and so the patient’s major body landmark information was extracted from the patient scout image in order to match clinical patients against a computational phantom in the library. The organ dose coefficients were estimated based on CT protocol and patient size as reported in Chapter 3. The exam CTDIvol, DLP, and TCM profiles were extracted and used to quantify the radiation field using the convolution technique proposed in Chapter 4.
With effective methods to predict and monitor organ dose, Chapters 6 aims to develop and validate improved measurement techniques for image quality assessment. Chapter 6 outlines the method that was developed to assess and predict quantum noise in clinical body CT images. Compared with previous phantom-based studies, this study accurately assessed the quantum noise in clinical images and further validated the correspondence between phantom-based measurements and the expected clinical image quality as a function of patient size and scanner attributes.
Chapter 7 aims to develop a practical strategy to generate hybrid CT images and assess the impact of dose reduction on diagnostic confidence for the diagnosis of acute pancreatitis. The general strategy is (1) to simulate synthetic CT images at multiple reduced-dose levels from clinical datasets using an image-based noise addition technique; (2) to develop quantitative and observer-based methods to validate the realism of simulated low-dose images; (3) to perform multi-reader observer studies on the low-dose image series to assess the impact of dose reduction on the diagnostic confidence for multiple diagnostic tasks; and (4) to determine the dose operating point for clinical CT examinations based on the minimum diagnostic performance to achieve protocol optimization.
Chapter 8 concludes the thesis with a summary of accomplished work and a discussion about future research.