2 resultados para two-mass model
em Duke University
Resumo:
Perceived discrimination is associated with increased engagement in unhealthy behaviors. We propose an identity-based pathway to explain this link. Drawing on an identity-based motivation model of health behaviors (Oyserman, Fryberg, & Yoder, 2007), we propose that erceptions of discrimination lead individuals to engage in ingroup-prototypical behaviors in the service of validating their identity and creating a sense of ingroup belonging. To the extent that people perceive unhealthy behaviors as ingroup-prototypical, perceived discrimination may thus increase motivation to engage in unhealthy behaviors. We describe our theoretical model and two studies that demonstrate initial support for some paths in this model. In Study 1, African American participants who reflected on racial discrimination were more likely to endorse unhealthy ingroup-prototypical behavior as self-characteristic than those who reflected on a neutral event. In Study 2, among African American participants who perceived unhealthy behaviors to be ingroup-prototypical, discrimination predicted greater endorsement of unhealthy behaviors as self-characteristic as compared to a control condition. These effects held both with and without controlling for body mass index (BMI) and income. Broader implications of this model for how discrimination adversely affects health-related decisions are discussed.
Resumo:
The dynamics of a population undergoing selection is a central topic in evolutionary biology. This question is particularly intriguing in the case where selective forces act in opposing directions at two population scales. For example, a fast-replicating virus strain outcompetes slower-replicating strains at the within-host scale. However, if the fast-replicating strain causes host morbidity and is less frequently transmitted, it can be outcompeted by slower-replicating strains at the between-host scale. Here we consider a stochastic ball-and-urn process which models this type of phenomenon. We prove the weak convergence of this process under two natural scalings. The first scaling leads to a deterministic nonlinear integro-partial differential equation on the interval $[0,1]$ with dependence on a single parameter, $\lambda$. We show that the fixed points of this differential equation are Beta distributions and that their stability depends on $\lambda$ and the behavior of the initial data around $1$. The second scaling leads to a measure-valued Fleming-Viot process, an infinite dimensional stochastic process that is frequently associated with a population genetics.