2 resultados para tungsten coil

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An abstract of a thesis devoted to using helix-coil models to study unfolded states.\\

Research on polypeptide unfolded states has received much more attention in the last decade or so than it has in the past. Unfolded states are thought to be implicated in various

misfolding diseases and likely play crucial roles in protein folding equilibria and folding rates. Structural characterization of unfolded states has proven to be

much more difficult than the now well established practice of determining the structures of folded proteins. This is largely because many core assumptions underlying

folded structure determination methods are invalid for unfolded states. This has led to a dearth of knowledge concerning the nature of unfolded state conformational

distributions. While many aspects of unfolded state structure are not well known, there does exist a significant body of work stretching back half a century that

has been focused on structural characterization of marginally stable polypeptide systems. This body of work represents an extensive collection of experimental

data and biophysical models associated with describing helix-coil equilibria in polypeptide systems. Much of the work on unfolded states in the last decade has not been devoted

specifically to the improvement of our understanding of helix-coil equilibria, which arguably is the most well characterized of the various conformational equilibria

that likely contribute to unfolded state conformational distributions. This thesis seeks to provide a deeper investigation of helix-coil equilibria using modern

statistical data analysis and biophysical modeling techniques. The studies contained within seek to provide deeper insights and new perspectives on what we presumably

know very well about protein unfolded states. \\

Chapter 1 gives an overview of recent and historical work on studying protein unfolded states. The study of helix-coil equilibria is placed in the context

of the general field of unfolded state research and the basics of helix-coil models are introduced.\\

Chapter 2 introduces the newest incarnation of a sophisticated helix-coil model. State of the art modern statistical techniques are employed to estimate the energies

of various physical interactions that serve to influence helix-coil equilibria. A new Bayesian model selection approach is utilized to test many long-standing

hypotheses concerning the physical nature of the helix-coil transition. Some assumptions made in previous models are shown to be invalid and the new model

exhibits greatly improved predictive performance relative to its predecessor. \\

Chapter 3 introduces a new statistical model that can be used to interpret amide exchange measurements. As amide exchange can serve as a probe for residue-specific

properties of helix-coil ensembles, the new model provides a novel and robust method to use these types of measurements to characterize helix-coil ensembles experimentally

and test the position-specific predictions of helix-coil models. The statistical model is shown to perform exceedingly better than the most commonly used

method for interpreting amide exchange data. The estimates of the model obtained from amide exchange measurements on an example helical peptide

also show a remarkable consistency with the predictions of the helix-coil model. \\

Chapter 4 involves a study of helix-coil ensembles through the enumeration of helix-coil configurations. Aside from providing new insights into helix-coil ensembles,

this chapter also introduces a new method by which helix-coil models can be extended to calculate new types of observables. Future work on this approach could potentially

allow helix-coil models to move into use domains that were previously inaccessible and reserved for other types of unfolded state models that were introduced in chapter 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic field inhomogeneity results in image artifacts including signal loss, image blurring and distortions, leading to decreased diagnostic accuracy. Conventional multi-coil (MC) shimming method employs both RF coils and shimming coils, whose mutual interference induces a tradeoff between RF signal-to-noise (SNR) ratio and shimming performance. To address this issue, RF coils were integrated with direct-current (DC) shim coils to shim field inhomogeneity while concurrently emitting and receiving RF signal without being blocked by the shim coils. The currents applied to the new coils, termed iPRES (integrated parallel reception, excitation and shimming), were optimized in the numerical simulation to improve the shimming performance. The objectives of this work is to offer a guideline for designing the optimal iPRES coil arrays to shim the abdomen.

In this thesis work, the main field () inhomogeneity was evaluated by root mean square error (RMSE). To investigate the shimming abilities of iPRES coil arrays, a set of the human abdomen MRI data was collected for the numerical simulations. Thereafter, different simplified iPRES(N) coil arrays were numerically modeled, including a 1-channel iPRES coil and 8-channel iPRES coil arrays. For 8-channel iPRES coil arrays, each RF coil was split into smaller DC loops in the x, y and z direction to provide extra shimming freedom. Additionally, the number of DC loops in a RF coil was increased from 1 to 5 to find the optimal divisions in z direction. Furthermore, switches were numerically implemented into iPRES coils to reduce the number of power supplies while still providing similar shimming performance with equivalent iPRES coil arrays.

The optimizations demonstrate that the shimming ability of an iPRES coil array increases with number of DC loops per RF coil. Furthermore, the z direction divisions tend to be more effective in reducing field inhomogeneity than the x and y divisions. Moreover, the shimming performance of an iPRES coil array gradually reach to a saturation level when the number of DC loops per RF coil is large enough. Finally, when switches were numerically implemented in the iPRES(4) coil array, the number of power supplies can be reduced from 32 to 8 while keeping the shimming performance similar to iPRES(3) and better than iPRES(1). This thesis work offers a guidance for the designs of iPRES coil arrays.