8 resultados para transcriptome
em Duke University
Resumo:
Olfactory sensory neurons (OSNs), which detect a myriad of odorants, are known to express one allele of one olfactory receptor (OR) gene (Olfr) from the largest gene family in the mammalian genome. The OSNs expressing the same OR project their axons to the main olfactory bulb where they converge to form glomeruli. This “One neuron-one receptor rule” makes the olfactory epithelium (OE), which consists of a vast number of OSNs expressing unique ORs, one of the most heterogeneous cell populations. However, the mechanism of how the single OR allele is chosen remains unclear along with the question of whether one OSN only expresses a single OR gene, a hypothesis that has not been rigorously verified while we performed the experiments. Moreover, failure of axonal targeting to single glomerulus was observed in MeCP2 deficient OSNs where delayed development was proposed as an explanation for the phenotype. How Mecp2 mutation caused this aberrant targeting is not entirely understood.
In this dissertation, we explored the transcriptomes of single and mature OSNs by single-cell RNA-Seq to reveal their heterogeneity and further studied the OR gene expression from these isolated OSNs. The singularity of sequenced OSNs was ensured by the observation of monoallelic expression of X-linked genes from the hybrid samples from crosses between mice of different strains where strain-specific polymorphisms could be used to track the allelic origins of SNP-containing reads. The clustering of expression profiles from triplicates that originated from the same cell assured that the transcriptomic identities of OSNs were maintained through the experimental process. The average gene expression profiles of sequenced OSNs correlated well to the conventional transcriptome data of FACS-sorted Omp-positive cells, and the top-ranked expression of OR was conceded in the single-OSN transcriptomes. While exploring cellular diversity, in addition to OR genes, we revealed nearly 200 differentially expressed genes among the sequenced OSNs in this study. Among the 36 sequenced OSNs, eight cells (22.2%) showed multiple OR gene expression and the presences of additional ORs were not restricted to the neighbor loci that shared the transcriptional effect of the primary OR expression, suggesting that the “One neuron-one receptor rule” might not be strictly true at the transcription level. All of the inferable ORs, including additional co-expressed ORs, were shown to be monoallelic. Our sequencing of 21 Mecp2308 mutant OSNs, of which 62% expressed more than one OR genes, and the expression levels of the additional ORs were significantly higher than those in the wild-type, suggested that MeCP2 plays a role in the regulation of singular OR gene expression. Dual label in situ hybridization along with the sequence data revealed that dorsal and ventral ORs were co-expressed in the same Mecp2 mutant OSN, further implying that MeCP2 might be involved in regulation of OR territories in the OE. Our results suggested a new role of MeCP2 in OR gene choice and ratified that this multiple-OR expression caused by Mecp2 mutation did not accompany delayed OSN development that has been observed in the previous studies on the Mecp2 mutants.
Resumo:
The carotid body (CB) is a major arterial chemoreceptor containing glomus cells that are activated by changes in arterial blood contents including oxygen. Despite significant advancement in the characterization of their physiological properties, our understanding on the underlying molecular machinery and signaling pathway in CB glomus cells is still limited.
To overcome these limitations, in chapter 1, I demonstrated the first transcriptome profile of CB glomus cells using single cell sequencing technology, which allowed us to uncover a set of abundantly expressed genes, including novel glomus cell-specific transcripts. These results revealed involvement of G protein-coupled receptor (GPCR) signaling pathway, various types of ion channels, as well as atypical mitochondrial subunits in CB function. I also identified ligands for the mostly highly expressed GPCR (Olfr78) in CB glomus cells and examined this receptor’s role in CB mediated hypoxic ventilatory response.
Current knowledge of CB suggest glomus cells rely on unusual mitochondria for their sensitivity to hypoxia. I previously identified the atypical mitochondrial subunit Ndufa4l2 as a highly over-represented gene in CB glomus cells. In chapter 2, to investigate the functional significance of Ndufa4l2 in CB function, I phenotyped both Ndufa4l2 knockout mice and mice with conditional Ndufa4l2 deletion in CB glomus cells. I found that Ndufa4l2 is essential to the establishment of regular breathing after birth. Ablating Ndufa4l2 in postnatal CB glomus cells resulted in defective CB sensitivity to hypoxia as well as CB mediated hypoxic ventilatory response. Together, our data showed that Ndufa4l2 is critical to respiratory control and the oxygen sensitivity of CB glomus cells.
Resumo:
Seasonal heterothermy—an orchestrated set of extreme physiological responses—is directly responsible for the over-winter survival of many mammalian groups living in seasonal environments. Historically, it was thought that the use of seasonal heterothermy (i.e. daily torpor and hibernation) was restricted to cold-adapted species; it is now known that such thermoregulatory strategies are used by more species than previously appreciated, including many tropical species. The dwarf and mouse lemurs (family Cheirogaleidae) are among the few primates known to use seasonal heterothermy to avoid Madagascar’s harsh and unpredictable environments. These primates provide an ideal study system for investigating a common mechanism of mammalian seasonal heterothermy. The overarching theme of this dissertation is to understand both the intrinsic and extrinsic drivers of heterothermy in three species of the family Cheirogaleidae. By using transcriptome sequencing to characterize gene expression in both captive and natural settings, we identify unique patterns of differential gene expression that are correlated with extreme changes in physiology in two species of dwarf lemurs: C. medius under captive conditions at the Duke Lemur Center and C. crossleyi studied under field conditions in Madagascar. Genes that are differentially expressed appear to be critical for maintaining the health of these animals when they undergo prolonged periods of metabolic depression concurrent with the hibernation phenotype. Further, a comparative analysis of previously studied mammalian heterotherms identifies shared genetic mechanisms underlying the hibernation phenotype across the phylogeny of mammals. Lastly, conducting a diet manipulation study with a captive colony of mouse lemurs (Microcebus murinus) at the Duke Lemur Center, we investigated the degree to which dietary effects influence torpor patterns. We find that tropical primate heterotherms may be exempt from the traditional paradigms governing cold-adapted heterothermy, having evolved different dietary strategies to tolerate circadian changes in body temperature.
Resumo:
This research examines three potential mechanisms by which bacteria can adapt to different temperatures: changes in strain-level population structure, gene regulation and particle colonization. For the first two mechanisms, I utilize bacterial strains from the Vibrionaceae family due to their ease of culturability, ubiquity in coastal environments and status as a model system for marine bacteria. I first examine vibrio seasonal dynamics in temperate, coastal water and compare the thermal performance of strains that occupy different thermal environments. Our results suggest that there are tradeoffs in adaptation to specific temperatures and that thermal specialization can occur at a very fine phylogenetic scale. The observed thermal specialization over relatively short evolutionary time-scales indicates that few genes or cellular processes may limit expansion to a different thermal niche. I then compare the genomic and transcriptional changes associated with thermal adaptation in closely-related vibrio strains under heat and cold stress. The two vibrio strains have very similar genomes and overall exhibit similar transcriptional profiles in response to temperature stress but their temperature preferences are determined by differential transcriptional responses in shared genes as well as temperature-dependent regulation of unique genes. Finally, I investigate the temporal dynamics of particle-attached and free-living bacterial community in coastal seawater and find that microhabitats exert a stronger forcing on microbial communities than environmental variability, suggesting that particle-attachment could buffer the impacts of environmental changes and particle-associated communities likely respond to the presence of distinct eukaryotes rather than commonly-measured environmental parameters. Integrating these results will offer new perspectives on the mechanisms by which bacteria respond to seasonal temperature changes as well as potential adaptations to climate change-driven warming of the surface oceans.
Resumo:
The six-layered neuron structure in the cerebral cortex is the foundation for human mental abilities. In the developing cerebral cortex, neural stem cells undergo proliferation and differentiate into intermediate progenitors and neurons, a process known as embryonic neurogenesis. Disrupted embryonic neurogenesis is the root cause of a wide range of neurodevelopmental disorders, including microcephaly and intellectual disabilities. Multiple layers of regulatory networks have been identified and extensively studied over the past decades to understand this complex but extremely crucial process of brain development. In recent years, post-transcriptional RNA regulation through RNA binding proteins has emerged as a critical regulatory nexus in embryonic neurogenesis. The exon junction complex (EJC) is a highly conserved RNA binding complex composed of four core proteins, Magoh, Rbm8a, Eif4a3, and Casc3. The EJC plays a major role in regulating RNA splicing, nuclear export, subcellular localization, translation, and nonsense mediated RNA decay. Human genetic studies have associated individual EJC components with various developmental disorders. We showed previously that haploinsufficiency of Magoh causes microcephaly and disrupted neural stem cell differentiation in mouse. However, it is unclear if other EJC core components are also required for embryonic neurogenesis. More importantly, the molecular mechanism through which the EJC regulates embryonic neurogenesis remains largely unknown. Here, we demonstrated with genetically modified mouse models that both Rbm8a and Eif4a3 are required for proper embryonic neurogenesis and the formation of a normal brain. Using transcriptome and proteomic analysis, we showed that the EJC posttranscriptionally regulates genes involved in the p53 pathway, splicing and translation regulation, as well as ribosomal biogenesis. This is the first in vivo evidence suggesting that the etiology of EJC associated neurodevelopmental diseases can be ribosomopathies. We also showed that, different from other EJC core components, depletion of Casc3 only led to mild neurogenesis defects in the mouse model. However, our data suggested that Casc3 is required for embryo viability, development progression, and is potentially a regulator of cardiac development. Together, data presented in this thesis suggests that the EJC is crucial for embryonic neurogenesis and that the EJC and its peripheral factors may regulate development in a tissue-specific manner.
Resumo:
Inflammatory breast cancer (IBC) is the deadliest, distinct subtype of breast cancer. High expression of epidermal growth factor receptors [EGFR or human epidermal growth factor receptor 2 (HER2)] in IBC tumors has prompted trials of anti-EGFR/HER2 monoclonal antibodies to inhibit oncogenic signaling; however, de novo and acquired therapeutic resistance is common. Another critical function of these antibodies is to mediate antibody-dependent cellular cytotoxicity (ADCC), which enables immune effector cells to engage tumors and deliver granzymes, activating executioner caspases. We hypothesized that high expression of anti-apoptotic molecules in tumors would render them resistant to ADCC. Herein, we demonstrate that the most potent caspase inhibitor, X-linked inhibitor of apoptosis protein (XIAP), overexpressed in IBC, drives resistance to ADCC mediated by cetuximab (anti-EGFR) and trastuzumab (anti-HER2). Overexpression of XIAP in parental IBC cell lines enhances resistance to ADCC; conversely, targeted downregulation of XIAP in ADCC-resistant IBC cells renders them sensitive. As hypothesized, this ADCC resistance is in part a result of the ability of XIAP to inhibit caspase activity; however, we also unexpectedly found that resistance was dependent on XIAP-mediated, caspase-independent suppression of reactive oxygen species (ROS) accumulation, which otherwise occurs during ADCC. Transcriptome analysis supported these observations by revealing modulation of genes involved in immunosuppression and oxidative stress response in XIAP-overexpressing, ADCC-resistant cells. We conclude that XIAP is a critical modulator of ADCC responsiveness, operating through both caspase-dependent and -independent mechanisms. These results suggest that strategies targeting the effects of XIAP on caspase activation and ROS suppression have the potential to enhance the activity of monoclonal antibody-based immunotherapy.
Resumo:
BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) is a globally prevalent cause of diarrhea. Though usually self-limited, it can be severe and debilitating. Little is known about the host transcriptional response to infection. We report the first gene expression analysis of the human host response to experimental challenge with ETEC. METHODS: We challenged 30 healthy adults with an unattenuated ETEC strain, and collected serial blood samples shortly after inoculation and daily for 8 days. We performed gene expression analysis on whole peripheral blood RNA samples from subjects in whom severe symptoms developed (n = 6) and a subset of those who remained asymptomatic (n = 6) despite shedding. RESULTS: Compared with baseline, symptomatic subjects demonstrated significantly different expression of 406 genes highlighting increased immune response and decreased protein synthesis. Compared with asymptomatic subjects, symptomatic subjects differentially expressed 254 genes primarily associated with immune response. This comparison also revealed 29 genes differentially expressed between groups at baseline, suggesting innate resilience to infection. Drug repositioning analysis identified several drug classes with potential utility in augmenting immune response or mitigating symptoms. CONCLUSIONS: There are statistically significant and biologically plausible differences in host gene expression induced by ETEC infection. Differential baseline expression of some genes may indicate resilience to infection.
Resumo:
The basement membrane (BM) is a highly conserved form of extracellular matrix that underlies or surrounds and supports most animal tissues. BMs are crossed by cells during various remodeling events in development, immune surveillance, or during cancer metastasis. Because BMs are dense and not easily penetrable, most of these cells must open a gap in order to facilitate their migration. The mechanisms by which cells execute these changes are poorly understood. A developmental event that requires the opening of a BM gap is C. elegans uterine-vulval connection. The anchor cell (AC), a specialized uterine cell, creates a de novo BM gap. Subsequent widening of the BM gap involves the underlying vulval precursor cells (VPCs) and the π cells, uterine neighbors of the AC through non-proteolytic BM sliding. Using forward and reverse genetic screening, transcriptome profiling, and live-cell imaging, I investigated how the cells in these tissues accomplish BM gap formation. In Chapter 2, I identify two potentially novel regulators of BM breaching, isolated through a large-scale forward genetic screen and characterize the invasion defect in these mutants. In Chapter 3, I describe single-cell transcriptome sequencing of the invasive AC. In Chapter 4, I describe the role of the π cells in opening the nascent BM gap. A complete developmental pathway for this process has been elucidated: the AC induces the π fate through Notch signaling, after which the π cells upregulate the Sec14 family protein CTG-1, which in turn restricts the trafficking of DGN-1 (dystroglycan), a laminin receptor, allowing the BM to slide. Chapter 5 outlines the implications of these discoveries.