7 resultados para traffic noise

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sound is an important medium for communication and marine organisms have evolved to capitalize on the efficiency with which sound energy travels through water. Anthropogenic and natural sound sources contribute to ocean ambient noise, which can interfere with the use of this sensory modality by marine animals. Anthropogenic noise sources have been increasing steadily over recent decades largely due to coastal population growth, increased global transportation, and offshore industrialization. Understanding the potential impacts of anthropogenic noise requires the establishment of ambient acoustic baselines from which to measure change. Establishing baselines, especially in quiet areas still largely unaffected by anthropogenic stressors, is particularly crucial in the face of the expansion of offshore industries, increasing coastal population and growing reliance on the ocean for global transportation. Global demand for liquid natural gas (LNG), catalyzed primarily by a growing Asian market, is expected to increase significantly in the next 20 years. The geographic position of British Columbia relative to these markets, a growing supply of LNG and new technology for extraction and shipping situate British Columbia as a strong competitor in the lucrative market. The LNG industry could have many adverse impacts on these territories and ecosystems. The Kitimat Fjord System is slated for the development of these LNG export facilities increasing shipping traffic for the port and thus increasing ambient noise in the fjord system. The purpose of this study is to 1) quantify the existing sound levels in the area surrounding Gil Island and 2) identify potential source mechanisms in order to provide a baseline study of the acoustic environment in the Kitimat Fjord system prior to potential increases from LNG shipping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a methodology for detecting anomalies from sequentially observed and potentially noisy data. The proposed approach consists of two main elements: 1) filtering, or assigning a belief or likelihood to each successive measurement based upon our ability to predict it from previous noisy observations and 2) hedging, or flagging potential anomalies by comparing the current belief against a time-varying and data-adaptive threshold. The threshold is adjusted based on the available feedback from an end user. Our algorithms, which combine universal prediction with recent work on online convex programming, do not require computing posterior distributions given all current observations and involve simple primal-dual parameter updates. At the heart of the proposed approach lie exponential-family models which can be used in a wide variety of contexts and applications, and which yield methods that achieve sublinear per-round regret against both static and slowly varying product distributions with marginals drawn from the same exponential family. Moreover, the regret against static distributions coincides with the minimax value of the corresponding online strongly convex game. We also prove bounds on the number of mistakes made during the hedging step relative to the best offline choice of the threshold with access to all estimated beliefs and feedback signals. We validate the theory on synthetic data drawn from a time-varying distribution over binary vectors of high dimensionality, as well as on the Enron email dataset. © 1963-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel data-delivery method for delay-sensitive traffic that significantly reduces the energy consumption in wireless sensor networks without reducing the number of packets that meet end-to-end real-time deadlines. The proposed method, referred to as SensiQoS, leverages the spatial and temporal correlation between the data generated by events in a sensor network and realizes energy savings through application-specific in-network aggregation of the data. SensiQoS maximizes energy savings by adaptively waiting for packets from upstream nodes to perform in-network processing without missing the real-time deadline for the data packets. SensiQoS is a distributed packet scheduling scheme, where nodes make localized decisions on when to schedule a packet for transmission to meet its end-to-end real-time deadline and to which neighbor they should forward the packet to save energy. We also present a localized algorithm for nodes to adapt to network traffic to maximize energy savings in the network. Simulation results show that SensiQoS improves the energy savings in sensor networks where events are sensed by multiple nodes, and spatial and/or temporal correlation exists among the data packets. Energy savings due to SensiQoS increase with increase in the density of the sensor nodes and the size of the sensed events. © 2010 Harshavardhan Sabbineni and Krishnendu Chakrabarty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a 5-GHz-broadband tunable slow-light device based on stimulated Brillouin scattering in a standard highly-nonlinear optical fiber pumped by a noise-current-modulated laser beam. The noisemodulation waveform uses an optimized pseudo-random distribution of the laser drive voltage to obtain an optimal flat-topped gain profile, which minimizes the pulse distortion and maximizes pulse delay for a given pump power. In comparison with a previous slow-modulation method, eye-diagram and signal-to-noise ratio (SNR) analysis show that this broadband slow-light technique significantly increases the fidelity of a delayed data sequence, while maintaining the delay performance. A fractional delay of 0.81 with a SNR of 5.2 is achieved at the pump power of 350 mW using a 2-km-long highly nonlinear fiber with the fast noise-modulation method, demonstrating a 50% increase in eye-opening and a 36% increase in SNR in the comparison.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a deterministic system with two conserved quantities and infinity many invariant measures. However the systems possess a unique invariant measure when enough stochastic forcing and balancing dissipation are added. We then show that as the forcing and dissipation are removed a unique limit of the deterministic system is selected. The exact structure of the limiting measure depends on the specifics of the stochastic forcing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20(th) century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Road traffic injuries (RTIs) are a growing but neglected global health crisis, requiring effective prevention to promote sustainable safety. Low- and middle-income countries (LMICs) share a disproportionately high burden with 90% of the world's road traffic deaths, and where RTIs are escalating due to rapid urbanization and motorization. Although several studies have assessed the effectiveness of a specific intervention, no systematic reviews have been conducted summarizing the effectiveness of RTI prevention initiatives specifically performed in LMIC settings; this study will help fill this gap. METHODS: In accordance with PRISMA guidelines we searched the electronic databases MEDLINE, EMBASE, Scopus, Web of Science, TRID, Lilacs, Scielo and Global Health. Articles were eligible if they considered RTI prevention in LMICs by evaluating a prevention-related intervention with outcome measures of crash, RTI, or death. In addition, a reference and citation analysis was conducted as well as a data quality assessment. A qualitative metasummary approach was used for data analysis and effect sizes were calculated to quantify the magnitude of emerging themes. RESULTS: Of the 8560 articles from the literature search, 18 articles from 11 LMICs fit the eligibility and inclusion criteria. Of these studies, four were from Sub-Saharan Africa, ten from Latin America and the Caribbean, one from the Middle East, and three from Asia. Half of the studies focused specifically on legislation, while the others focused on speed control measures, educational interventions, enforcement, road improvement, community programs, or a multifaceted intervention. CONCLUSION: Legislation was the most common intervention evaluated with the best outcomes when combined with strong enforcement initiatives or as part of a multifaceted approach. Because speed control is crucial to crash and injury prevention, road improvement interventions in LMIC settings should carefully consider how the impact of improvements will affect speed and traffic flow. Further road traffic injury prevention interventions should be performed in LMICs with patient-centered outcomes in order to guide injury prevention in these complex settings.