4 resultados para top of mind
em Duke University
Resumo:
For primates, and other arboreal mammals, adopting suspensory locomotion represents one of the strategies an animal can use to prevent toppling off a thin support during arboreal movement and foraging. While numerous studies have reported the incidence of suspensory locomotion in a broad phylogenetic sample of mammals, little research has explored what mechanical transitions must occur in order for an animal to successfully adopt suspensory locomotion. Additionally, many primate species are capable of adopting a highly specialized form of suspensory locomotion referred to as arm-swinging, but few scenarios have been posited to explain how arm-swinging initially evolved. This study takes a comparative experimental approach to explore the mechanics of below branch quadrupedal locomotion in primates and other mammals to determine whether above and below branch quadrupedal locomotion represent neuromuscular mirrors of each other, and whether the patterns below branch quadrupedal locomotion are similar across taxa. Also, this study explores whether the nature of the flexible coupling between the forelimb and hindlimb observed in primates is a uniquely primate feature, and investigates the possibility that this mechanism could be responsible for the evolution of arm-swinging.
To address these research goals, kinetic, kinematic, and spatiotemporal gait variables were collected from five species of primate (Cebus capucinus, Daubentonia madagascariensis, Lemur catta, Propithecus coquereli, and Varecia variegata) walking quadrupedally above and below branches. Data from these primate species were compared to data collected from three species of non-primate mammals (Choloepus didactylus, Pteropus vampyrus, and Desmodus rotundus) and to three species of arm-swinging primate (Hylobates moloch, Ateles fusciceps, and Pygathrix nemaeus) to determine how varying forms of suspensory locomotion relate to each other and across taxa.
From the data collected in this study it is evident the specialized gait characteristics present during above branch quadrupedal locomotion in primates are not observed when walking below branches. Instead, gait mechanics closely replicate the characteristic walking patterns of non-primate mammals, with the exception that primates demonstrate an altered limb loading pattern during below branch quadrupedal locomotion, in which the forelimb becomes the primary propulsive and weight-bearing limb; a pattern similar to what is observed during arm-swinging. It is likely that below branch quadrupedal locomotion represents a “mechanical release” from the challenges of moving on top of thin arboreal supports. Additionally, it is possible, that arm-swinging could have evolved from an anatomically-generalized arboreal primate that began to forage and locomote below branches. During these suspensory bouts, weight would have been shifted away from the hindlimbs towards forelimbs, and as the frequency of these boats increased the reliance of the forelimb as the sole form of weight support would have also increased. This form of functional decoupling may have released the hindlimbs from their weight-bearing role during suspensory locomotion, and eventually arm-swinging would have replaced below branch quadrupedal locomotion as the primary mode of suspensory locomotion observed in some primate species. This study provides the first experimental evidence supporting the hypothetical link between below branch quadrupedal locomotion and arm-swinging in primates.
Resumo:
This study focuses on a series of foundational stylistic and formal innovations in eighteenth-century and Romantic literature, and argues that they can be cumulatively attributed to the distinct challenges authors faced in representing human action and the will. The study focuses in particular on cases of “acting against better judgment” or “failing to do what one knows one ought to do” – concepts originally theorized as “akrasia” and “weakness of the will” in ancient Greek and Scholastic thought. During the Enlightenment, philosophy increasingly conceives of human minds and bodies like systems and machines, and consequently fails to address such cases except as intractable or incoherent. Yet eighteenth-century and Romantic narratives and poetry consistently engage the paradoxes and ambiguities of action and volition in representations of akrasia. As a result, literature develops representational strategies that distinguish the epistemic capacities of literature as privileged over those of philosophy.
The study begins by centering on narratives of distempered selves from the 1760s. Jean-Jacques Rousseau’s Confessions and Laurence Sterne’s A Sentimental Journey narrate cases of knowingly and weakly acting against better judgment, and in so doing, reveal the limitations of the “philosophy of the passions” that famously informed sentimental literature at the time. These texts find that the interpretive difficulties of action demand a non-systematic and hermeneutic approach to interpreting a self through the genre of narrative. Rousseau’s narrative in particular informs William Godwin’s realist novels of distempered subjects. Departing from his mechanistic philosophy of mind and action, Godwin develops the technique of free indirect discourse in his third novel Fleetwood (1805) as a means of evoking the ironies and self-deceptions in how we talk about willing.
Romantic poetry employs the literary trope of weakness of will primarily through the problem of regretted inaction – a problem which I argue motivates the major poetic innovations of William Wordsworth and John Keats. While Samuel Taylor Coleridge sought to characterize his weakness of will in philosophical writing, Wordsworth turns to poetry with The Prelude (1805), revealing poetry itself to be a self-deceiving and disappointing form of procrastination. More explicitly than Wordsworth, John Keats identifies indolence as the prime symbol and basis of what he calls “negative capability.” In his letters and poems such as “On Seeing the Elgin Marbles” (1817) and “Ode on Indolence” (1819), Keats reveals how the irreducibly contradictory qualities of human agency speak to the particular privilege of “disinterested aesthetics” – a genre fitted for the modern era for its ability to disclose contradictions without seeking to resolve or explain them in terms of component parts.
Resumo:
Prospective estimation of patient CT organ dose prior to examination can help technologist adjust CT scan settings to reduce radiation dose to patient while maintaining certain image quality. One possible way to achieve this is matching patient to digital models precisely. In previous work, patient matching was performed manually by matching the trunk height which was defined as the distance from top of clavicle to bottom of pelvis. However, this matching method is time consuming and impractical in scout images where entire trunk is not included. Purpose of this work was to develop an automatic patient matching strategy and verify its accuracy.
Resumo:
© 2016, Springer-Verlag Berlin Heidelberg.Nanoparticles are being explored in many different applications due to the unique properties offered by quantum effects. To broaden the scope of these applications, the deposition of nanoparticles onto substrates in a simple and controlled way is highly desired. In this study, we use resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) for the deposition of metallic, silver nanoparticles for plasmonic applications. We find that RIR-MAPLE, a simple and versatile approach, is able to deposit silver nanoparticles as large as 80 nm onto different substrates with good adhesion, regardless of substrate properties. In addition, the nanoparticle surface coverage of the substrates, which result from the random distribution of nanoparticles across the substrate per laser pulse, can be simply and precisely controlled by RIR-MAPLE. Polymer films of poly(3-hexylthiophene-2,5-diyl) (P3HT) are also deposited by RIR-MAPLE on top of the deposited silver nanoparticles in order to demonstrate enhanced absorption due to the localized surface plasmon resonance effect. The reported features of RIR-MAPLE nanoparticle deposition indicate that this tool can enable efficient processing of nanoparticle thin films for applications that require specific substrates or configurations that are not easily achieved using solution-based approaches.