4 resultados para tissue structure
em Duke University
Resumo:
Magnetic resonance imaging is a research and clinical tool that has been applied in a wide variety of sciences. One area of magnetic resonance imaging that has exhibited terrific promise and growth in the past decade is magnetic susceptibility imaging. Imaging tissue susceptibility provides insight into the microstructural organization and chemical properties of biological tissues, but this image contrast is not well understood. The purpose of this work is to develop effective approaches to image, assess, and model the mechanisms that generate both isotropic and anisotropic magnetic susceptibility contrast in biological tissues, including myocardium and central nervous system white matter.
This document contains the first report of MRI-measured susceptibility anisotropy in myocardium. Intact mouse heart specimens were scanned using MRI at 9.4 T to ascertain both the magnetic susceptibility and myofiber orientation of the tissue. The susceptibility anisotropy of myocardium was observed and measured by relating the apparent tissue susceptibility as a function of the myofiber angle with respect to the applied magnetic field. A multi-filament model of myocardial tissue revealed that the diamagnetically anisotropy α-helix peptide bonds in myofilament proteins are capable of producing bulk susceptibility anisotropy on a scale measurable by MRI, and are potentially the chief sources of the experimentally observed anisotropy.
The growing use of paramagnetic contrast agents in magnetic susceptibility imaging motivated a series of investigations regarding the effect of these exogenous agents on susceptibility imaging in the brain, heart, and kidney. In each of these organs, gadolinium increases susceptibility contrast and anisotropy, though the enhancements depend on the tissue type, compartmentalization of contrast agent, and complex multi-pool relaxation. In the brain, the introduction of paramagnetic contrast agents actually makes white matter tissue regions appear more diamagnetic relative to the reference susceptibility. Gadolinium-enhanced MRI yields tensor-valued susceptibility images with eigenvectors that more accurately reflect the underlying tissue orientation.
Despite the boost gadolinium provides, tensor-valued susceptibility image reconstruction is prone to image artifacts. A novel algorithm was developed to mitigate these artifacts by incorporating orientation-dependent tissue relaxation information into susceptibility tensor estimation. The technique was verified using a numerical phantom simulation, and improves susceptibility-based tractography in the brain, kidney, and heart. This work represents the first successful application of susceptibility-based tractography to a whole, intact heart.
The knowledge and tools developed throughout the course of this research were then applied to studying mouse models of Alzheimer’s disease in vivo, and studying hypertrophic human myocardium specimens ex vivo. Though a preliminary study using contrast-enhanced quantitative susceptibility mapping has revealed diamagnetic amyloid plaques associated with Alzheimer’s disease in the mouse brain ex vivo, non-contrast susceptibility imaging was unable to precisely identify these plaques in vivo. Susceptibility tensor imaging of human myocardium specimens at 9.4 T shows that susceptibility anisotropy is larger and mean susceptibility is more diamagnetic in hypertrophic tissue than in normal tissue. These findings support the hypothesis that myofilament proteins are a source of susceptibility contrast and anisotropy in myocardium. This collection of preclinical studies provides new tools and context for analyzing tissue structure, chemistry, and health in a variety of organs throughout the body.
Resumo:
Tissue engineering of biomimetic skeletal muscle may lead to development of new therapies for myogenic repair and generation of improved in vitro models for studies of muscle function, regeneration, and disease. For the optimal therapeutic and in vitro results, engineered muscle should recreate the force-generating and regenerative capacities of native muscle, enabled respectively by its two main cellular constituents, the mature myofibers and satellite cells (SCs). Still, after 20 years of research, engineered muscle tissues fall short of mimicking contractile function and self-repair capacity of native skeletal muscle. To overcome this limitation, we set the thesis goals to: 1) generate a highly functional, self-regenerative engineered skeletal muscle and 2) explore mechanisms governing its formation and regeneration in vitro and survival and vascularization in vivo.
By studying myogenic progenitors isolated from neonatal rats, we first discovered advantages of using an adherent cell fraction for engineering of skeletal muscles with robust structure and function and the formation of a SC pool. Specifically, when synergized with dynamic culture conditions, the use of adherent cells yielded muscle constructs capable of replicating the contractile output of native neonatal muscle, generating >40 mN/mm2 of specific force. Moreover, tissue structure and cellular heterogeneity of engineered muscle constructs closely resembled those of native muscle, consisting of aligned, striated myofibers embedded in a matrix of basal lamina proteins and SCs that resided in native-like niches. Importantly, we identified rapid formation of myofibers early during engineered muscle culture as a critical condition leading to SC homing and conversion to a quiescent, non-proliferative state. The SCs retained natural regenerative capacity and activated, proliferated, and differentiated to rebuild damaged myofibers and recover contractile function within 10 days after the muscle was injured by cardiotoxin (CTX). The resulting regenerative response was directly dependent on the abundance of SCs in the engineered muscle that we varied by expanding starting cell population under different levels of basic fibroblast growth factor (bFGF), an inhibitor of myogenic differentiation. Using a dorsal skinfold window chamber model in nude mice, we further demonstrated that within 2 weeks after implantation, initially avascular engineered muscle underwent robust vascularization and perfusion and exhibited improved structure and contractile function beyond what was achievable in vitro.
To enhance translational value of our approach, we transitioned to use of adult rat myogenic cells, but found that despite similar function to that of neonatal constructs, adult-derived muscle lacked regenerative capacity. Using a novel platform for live monitoring of calcium transients during construct culture, we rapidly screened for potential enhancers of regeneration to establish that many known pro-regenerative soluble factors were ineffective in stimulating in vitro engineered muscle recovery from CTX injury. This led us to introduce bone marrow-derived macrophages (BMDMs), an established non-myogenic contributor to muscle repair, to the adult-derived constructs and to demonstrate remarkable recovery of force generation (>80%) and muscle mass (>70%) following CTX injury. Mechanistically, while similar patterns of early SC activation and proliferation upon injury were observed in engineered muscles with and without BMDMs, a significant decrease in injury-induced apoptosis occurred only in the presence of BMDMs. The importance of preventing apoptosis was further demonstrated by showing that application of caspase inhibitor (Q-VD-OPh) yielded myofiber regrowth and functional recovery post-injury. Gene expression analysis suggested muscle-secreted tumor necrosis factor-α (TNFα) as a potential inducer of apoptosis as common for muscle degeneration in diseases and aging in vivo. Finally, we showed that BMDM incorporation in engineered muscle enhanced its growth, angiogenesis, and function following implantation in the dorsal window chambers in nude mice.
In summary, this thesis describes novel strategies to engineer highly contractile and regenerative skeletal muscle tissues starting from neonatal or adult rat myogenic cells. We find that age-dependent differences of myogenic cells distinctly affect the self-repair capacity but not contractile function of engineered muscle. Adult, but not neonatal, myogenic progenitors appear to require co-culture with other cells, such as bone marrow-derived macrophages, to allow robust muscle regeneration in vitro and rapid vascularization in vivo. Regarding the established roles of immune system cells in the repair of various muscle and non-muscle tissues, we expect that our work will stimulate the future applications of immune cells as pro-regenerative or anti-inflammatory constituents of engineered tissue grafts. Furthermore, we expect that rodent studies in this thesis will inspire successful engineering of biomimetic human muscle tissues for use in regenerative therapy and drug discovery applications.
Resumo:
The kidney's major role in filtration depends on its high blood flow, concentrating mechanisms, and biochemical activation. The kidney's greatest strengths also lead to vulnerability for drug-induced nephrotoxicity and other renal injuries. The current standard to diagnose renal injuries is with a percutaneous renal biopsy, which can be biased and insufficient. In one particular case, biopsy of a kidney with renal cell carcinoma can actually initiate metastasis. Tools that are sensitive and specific to detect renal disease early are essential, especially noninvasive diagnostic imaging. While other imaging modalities (ultrasound and x-ray/CT) have their unique advantages and disadvantages, MRI has superb soft tissue contrast without ionizing radiation. More importantly, there is a richness of contrast mechanisms in MRI that has yet to be explored and applied to study renal disease.
The focus of this work is to advance preclinical imaging tools to study the structure and function of the renal system. Studies were conducted in normal and disease models to understand general renal physiology as well as pathophysiology. This dissertation is separated into two parts--the first is the identification of renal architecture with ex vivo MRI; the second is the characterization of renal dynamics and function with in vivo MRI. High resolution ex vivo imaging provided several opportunities including: 1) identification of fine renal structures, 2) implementation of different contrast mechanisms with several pulse sequences and reconstruction methods, 3) development of image-processing tools to extract regions and structures, and 4) understanding of the nephron structures that create MR contrast and that are important for renal physiology. The ex vivo studies allowed for understanding and translation to in vivo studies. While the structure of this dissertation is organized by individual projects, the goal is singular: to develop magnetic resonance imaging biomarkers for renal system.
The work presented here includes three ex vivo studies and two in vivo studies:
1) Magnetic resonance histology of age-related nephropathy in sprague dawley.
2) Quantitative susceptibility mapping of kidney inflammation and fibrosis in type 1 angiotensin receptor-deficient mice.
3) Susceptibility tensor imaging of the kidney and its microstructural underpinnings.
4) 4D MRI of renal function in the developing mouse.
5) 4D MRI of polycystic kidneys in rapamycin treated Glis3-deficient mice.
Resumo:
Tissue-engineered blood vessels (TEBV) can serve as vascular grafts and may also play an important role in the development of organs-on-a-chip. Most TEBV construction involves scaffolding with biomaterials such as collagen gel or electrospun fibrous mesh. Hypothesizing that a scaffold-free TEBV may be advantageous, we constructed a tubular structure (1 mm i.d.) from aligned human mesenchymal cell sheets (hMSC) as the wall and human endothelial progenitor cell (hEPC) coating as the lumen. The burst pressure of the scaffold-free TEBV was above 200 mmHg after three weeks of sequential culture in a rotating wall bioreactor and perfusion at 6.8 dynes/cm(2). The interwoven organization of the cell layers and extensive extracellular matrix (ECM) formation of the hMSC-based TEBV resembled that of native blood vessels. The TEBV exhibited flow-mediated vasodilation, vasoconstriction after exposure to 1 μM phenylephrine and released nitric oxide in a manner similar to that of porcine femoral vein. HL-60 cells attached to the TEBV lumen after TNF-α activation to suggest a functional endothelium. This study demonstrates the potential of a hEPC endothelialized hMSC-based TEBV for drug screening.