7 resultados para time-frequency distribution (TFD)
em Duke University
Resumo:
We present measurements of morphological features in a thick turbid sample using light-scattering spectroscopy (LSS) and Fourier-domain low-coherence interferometry (fLCI) by processing with the dual-window (DW) method. A parallel frequency domain optical coherence tomography (OCT) system with a white-light source is used to image a two-layer phantom containing polystyrene beads of diameters 4.00 and 6.98 mum on the top and bottom layers, respectively. The DW method decomposes each OCT A-scan into a time-frequency distribution with simultaneously high spectral and spatial resolution. The spectral information from localized regions in the sample is used to determine scatterer structure. The results show that the two scatterer populations can be differentiated using LSS and fLCI.
Resumo:
This paper describes a methodology for detecting anomalies from sequentially observed and potentially noisy data. The proposed approach consists of two main elements: 1) filtering, or assigning a belief or likelihood to each successive measurement based upon our ability to predict it from previous noisy observations and 2) hedging, or flagging potential anomalies by comparing the current belief against a time-varying and data-adaptive threshold. The threshold is adjusted based on the available feedback from an end user. Our algorithms, which combine universal prediction with recent work on online convex programming, do not require computing posterior distributions given all current observations and involve simple primal-dual parameter updates. At the heart of the proposed approach lie exponential-family models which can be used in a wide variety of contexts and applications, and which yield methods that achieve sublinear per-round regret against both static and slowly varying product distributions with marginals drawn from the same exponential family. Moreover, the regret against static distributions coincides with the minimax value of the corresponding online strongly convex game. We also prove bounds on the number of mistakes made during the hedging step relative to the best offline choice of the threshold with access to all estimated beliefs and feedback signals. We validate the theory on synthetic data drawn from a time-varying distribution over binary vectors of high dimensionality, as well as on the Enron email dataset. © 1963-2012 IEEE.
Resumo:
We present an analytical method that yields the real and imaginary parts of the refractive index (RI) from low-coherence interferometry measurements, leading to the separation of the scattering and absorption coefficients of turbid samples. The imaginary RI is measured using time-frequency analysis, with the real part obtained by analyzing the nonlinear phase induced by a sample. A derivation relating the real part of the RI to the nonlinear phase term of the signal is presented, along with measurements from scattering and nonscattering samples that exhibit absorption due to hemoglobin.
Resumo:
This dissertation focuses on two vital challenges in relation to whale acoustic signals: detection and classification.
In detection, we evaluated the influence of the uncertain ocean environment on the spectrogram-based detector, and derived the likelihood ratio of the proposed Short Time Fourier Transform detector. Experimental results showed that the proposed detector outperforms detectors based on the spectrogram. The proposed detector is more sensitive to environmental changes because it includes phase information.
In classification, our focus is on finding a robust and sparse representation of whale vocalizations. Because whale vocalizations can be modeled as polynomial phase signals, we can represent the whale calls by their polynomial phase coefficients. In this dissertation, we used the Weyl transform to capture chirp rate information, and used a two dimensional feature set to represent whale vocalizations globally. Experimental results showed that our Weyl feature set outperforms chirplet coefficients and MFCC (Mel Frequency Cepstral Coefficients) when applied to our collected data.
Since whale vocalizations can be represented by polynomial phase coefficients, it is plausible that the signals lie on a manifold parameterized by these coefficients. We also studied the intrinsic structure of high dimensional whale data by exploiting its geometry. Experimental results showed that nonlinear mappings such as Laplacian Eigenmap and ISOMAP outperform linear mappings such as PCA and MDS, suggesting that the whale acoustic data is nonlinear.
We also explored deep learning algorithms on whale acoustic data. We built each layer as convolutions with either a PCA filter bank (PCANet) or a DCT filter bank (DCTNet). With the DCT filter bank, each layer has different a time-frequency scale representation, and from this, one can extract different physical information. Experimental results showed that our PCANet and DCTNet achieve high classification rate on the whale vocalization data set. The word error rate of the DCTNet feature is similar to the MFSC in speech recognition tasks, suggesting that the convolutional network is able to reveal acoustic content of speech signals.
Resumo:
The reminiscence bump is the tendency to recall more autobiographical memories from adolescence and early adulthood than from adjacent lifetime periods. In this online study, the robustness of the reminiscence bump was examined by looking at participants' judgements about the quality of football players. Dutch participants (N = 619) were asked who they thought the five best players of all time were. The participants could select the names from a list or enter the names when their favourite players were not on the list. Johan Cruijff, Pelé, and Diego Maradona were the three most often mentioned players. Participants frequently named football players who reached the midpoint of their career when the participants were adolescents (mode = 17). The results indicate that the reminiscence bump can also be identified outside the autobiographical memory domain.
Resumo:
Mainstream electrical stimulation therapies, e.g., spinal cord stimulation (SCS) and deep brain stimulation, use pulse trains that are delivered at rates no higher than 200 Hz. In recent years, stimulation of nerve fibers using kilohertz-frequency (KHF) signals has received increased attention due to the potential to penetrate deeper in the tissue and to the ability to block conduction of action potentials. As well, there are a growing number of clinical applications that use KHF waveforms, including transcutaneous electrical stimulation (TES) for overactive bladder and SCS for chronic pain. However, there is a lack of fundamental understanding of the mechanisms of action of KHF stimulation. The goal of this research was to analyze quantitatively KHF neurostimulation.
We implemented a multilayer volume conductor model of TES including dispersion and capacitive effects, and we validated the model with in vitro measurements in a phantom constructed from dispersive materials. We quantified the effects of frequency on the distribution of potentials and fiber excitation. We also quantified the effects of a novel transdermal amplitude modulated signal (TAMS) consisting of a non-zero offset sinusoidal carrier modulated by a square-pulse train. The model revealed that high-frequency signals generated larger potentials at depth than did low frequencies, but this did not translate into lower stimulation thresholds. Both TAMS and conventional rectangular pulses activated more superficial fibers in addition to the deeper, target fibers, and at no frequency did we observe an inversion of the strength-distance relationship. In addition, we performed in vivo experiments and applied direct stimulation to the sciatic nerve of cats and rats. We measured electromyogram and compound action potential activity evoked by pulses, TAMS and modified versions of TAMS in which we varied the amplitude of the carrier. Nerve fiber activation using TAMS showed no difference with respect to activation with conventional pulse for carrier frequencies of 20 kHz and higher, regardless the size of the carrier. Therefore, TAMS with carrier frequencies >20 kHz does not offer any advantage over conventional pulses, even with larger amplitudes of the carrier, and this has implications for design of waveforms for efficient and effective TES.
We developed a double cable model of a dorsal column (DC) fiber to quantify the responses of DC fibers to a novel KHF-SCS signal. We validated the model using in vivo recordings of the strength-duration relationship and the recovery cycle of single DC fibers. We coupled the fiber model to a model of SCS in human and applied the KHF-SCS signal to quantify thresholds for activation and conduction block for different fiber diameters at different locations in the DCs. Activation and block thresholds increased sharply as the fibers were placed deeper in the DCs, and decreased for larger diameter fibers. Activation thresholds were > 5 mA in all cases and up to five times higher than for conventional (~ 50 Hz) SCS. For fibers exhibiting persistent activation, the degree of synchronization of the firing activity to the KHF-SCS signal, as quantified using the vector strength, was low for a broad amplitude range, and the dissimilarity between the activities in pairs of fibers, as quantified using the spike time distance, was high and decreased for more closely positioned fibers. Conduction block thresholds were higher than 30 mA for all fiber diameters at any depth and well above the amplitudes used clinically (0.5 – 5 mA). KHF-SCS appears to activate few, large, superficial fibers, and the activated fibers fire asynchronously to the stimulation signal and to other activated fibers.
The outcomes of this work contribute to the understanding of KHF neurostimulation by establishing the importance of the tissue filtering properties on the distribution of potentials, assessing quantitatively the impact of KHF stimulation on nerve fiber excitation, and developing and validating a detailed model of a DC fiber to characterize the effects of KHF stimulation on DC axons. The results have implications for design of waveforms for efficient and effective nerve fiber stimulation in the peripheral and central nervous system.