2 resultados para time evolution
em Duke University
Resumo:
All organisms live in complex habitats that shape the course of their evolution by altering the phenotype expressed by a given genotype (a phenomenon known as phenotypic plasticity) and simultaneously by determining the evolutionary fitness of that phenotype. In some cases, phenotypic evolution may alter the environment experienced by future generations. This dissertation describes how genetic and environmental variation act synergistically to affect the evolution of glucosinolate defensive chemistry and flowering time in Boechera stricta, a wild perennial herb. I focus particularly on plant-associated microbes as a part of the plant’s environment that may alter trait evolution and in turn be affected by the evolution of those traits. In the first chapter I measure glucosinolate production and reproductive fitness of over 1,500 plants grown in common gardens in four diverse natural habitats, to describe how patterns of plasticity and natural selection intersect and may influence glucosinolate evolution. I detected extensive genetic variation for glucosinolate plasticity and determined that plasticity may aid colonization of new habitats by moving phenotypes in the same direction as natural selection. In the second chapter I conduct a greenhouse experiment to test whether naturally-occurring soil microbial communities contributed to the differences in phenotype and selection that I observed in the field experiment. I found that soil microbes cause plasticity of flowering time but not glucosinolate production, and that they may contribute to natural selection on both traits; thus, non-pathogenic plant-associated microbes are an environmental feature that could shape plant evolution. In the third chapter, I combine a multi-year, multi-habitat field experiment with high-throughput amplicon sequencing to determine whether B. stricta-associated microbial communities are shaped by plant genetic variation. I found that plant genotype predicts the diversity and composition of leaf-dwelling bacterial communities, but not root-associated bacterial communities. Furthermore, patterns of host genetic control over associated bacteria were largely site-dependent, indicating an important role for genotype-by-environment interactions in microbiome assembly. Together, my results suggest that soil microbes influence the evolution of plant functional traits and, because they are sensitive to plant genetic variation, this trait evolution may alter the microbial neighborhood of future B. stricta generations. Complex patterns of plasticity, selection, and symbiosis in natural habitats may impact the evolution of glucosinolate profiles in Boechera stricta.
Resumo:
Dengue is an important vector-borne virus that infects on the order of 400 million individuals per year. Infection with one of the virus's four serotypes (denoted DENV-1 to 4) may be silent, result in symptomatic dengue 'breakbone' fever, or develop into the more severe dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Extensive research has therefore focused on identifying factors that influence dengue infection outcomes. It has been well-documented through epidemiological studies that DHF is most likely to result from a secondary heterologous infection, and that individuals experiencing a DENV-2 or DENV-3 infection typically are more likely to present with more severe dengue disease than those individuals experiencing a DENV-1 or DENV-4 infection. However, a mechanistic understanding of how these risk factors affect disease outcomes, and further, how the virus's ability to evolve these mechanisms will affect disease severity patterns over time, is lacking. In the second chapter of my dissertation, I formulate mechanistic mathematical models of primary and secondary dengue infections that describe how the dengue virus interacts with the immune response and the results of this interaction on the risk of developing severe dengue disease. I show that only the innate immune response is needed to reproduce characteristic features of a primary infection whereas the adaptive immune response is needed to reproduce characteristic features of a secondary dengue infection. I then add to these models a quantitative measure of disease severity that assumes immunopathology, and analyze the effectiveness of virological indicators of disease severity. In the third chapter of my dissertation, I then statistically fit these mathematical models to viral load data of dengue patients to understand the mechanisms that drive variation in viral load. I specifically consider the roles that immune status, clinical disease manifestation, and serotype may play in explaining viral load variation observed across the patients. With this analysis, I show that there is statistical support for the theory of antibody dependent enhancement in the development of severe disease in secondary dengue infections and that there is statistical support for serotype-specific differences in viral infectivity rates, with infectivity rates of DENV-2 and DENV-3 exceeding those of DENV-1. In the fourth chapter of my dissertation, I integrate these within-host models with a vector-borne epidemiological model to understand the potential for virulence evolution in dengue. Critically, I show that dengue is expected to evolve towards intermediate virulence, and that the optimal virulence of the virus depends strongly on the number of serotypes that co-circulate. Together, these dissertation chapters show that dengue viral load dynamics provide insight into the within-host mechanisms driving differences in dengue disease patterns and that these mechanisms have important implications for dengue virulence evolution.