3 resultados para the pay-off method

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we developed and improved the numerical mode matching (NMM) method which has previously been shown to be a fast and robust semi-analytical solver to investigate the propagation of electromagnetic (EM) waves in an isotropic layered medium. The applicable models, such as cylindrical waveguide, optical fiber, and borehole with earth geological formation, are generally modeled as an axisymmetric structure which is an orthogonal-plano-cylindrically layered (OPCL) medium consisting of materials stratified planarly and layered concentrically in the orthogonal directions.

In this report, several important improvements have been made to extend applications of this efficient solver to the anisotropic OCPL medium. The formulas for anisotropic media with three different diagonal elements in the cylindrical coordinate system are deduced to expand its application to more general materials. The perfectly matched layer (PML) is incorporated along the radial direction as an absorbing boundary condition (ABC) to make the NMM method more accurate and efficient for wave diffusion problems in unbounded media and applicable to scattering problems with lossless media. We manipulate the weak form of Maxwell's equations and impose the correct boundary conditions at the cylindrical axis to solve the singularity problem which is ignored by all previous researchers. The spectral element method (SEM) is introduced to more efficiently compute the eigenmodes of higher accuracy with less unknowns, achieving a faster mode matching procedure between different horizontal layers. We also prove the relationship of the field between opposite mode indices for different types of excitations, which can reduce the computational time by half. The formulas for computing EM fields excited by an electric or magnetic dipole located at any position with an arbitrary orientation are deduced. And the excitation are generalized to line and surface current sources which can extend the application of NMM to the simulations of controlled source electromagnetic techniques. Numerical simulations have demonstrated the efficiency and accuracy of this method.

Finally, the improved numerical mode matching (NMM) method is introduced to efficiently compute the electromagnetic response of the induction tool from orthogonal transverse hydraulic fractures in open or cased boreholes in hydrocarbon exploration. The hydraulic fracture is modeled as a slim circular disk which is symmetric with respect to the borehole axis and filled with electrically conductive or magnetic proppant. The NMM solver is first validated by comparing the normalized secondary field with experimental measurements and a commercial software. Then we analyze quantitatively the induction response sensitivity of the fracture with different parameters, such as length, conductivity and permeability of the filled proppant, to evaluate the effectiveness of the induction logging tool for fracture detection and mapping. Casings with different thicknesses, conductivities and permeabilities are modeled together with the fractures in boreholes to investigate their effects for fracture detection. It reveals that the normalized secondary field will not be weakened at low frequencies, ensuring the induction tool is still applicable for fracture detection, though the attenuation of electromagnetic field through the casing is significant. A hybrid approach combining the NMM method and BCGS-FFT solver based integral equation has been proposed to efficiently simulate the open or cased borehole with tilted fractures which is a non-axisymmetric model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urban problems have several features that make them inherently dynamic. Large transaction costs all but guarantee that homeowners will do their best to consider how a neighborhood might change before buying a house. Similarly, stores face large sunk costs when opening, and want to be sure that their investment will pay off in the long run. In line with those concerns, different areas of Economics have made recent advances in modeling those questions within a dynamic framework. This dissertation contributes to those efforts.

Chapter 2 discusses how to model an agent’s location decision when the agent must learn about an exogenous amenity that may be changing over time. The model is applied to estimating the marginal willingness to pay to avoid crime, in which agents are learning about the crime rate in a neighborhood, and the crime rate can change in predictable (Markovian) ways.

Chapters 3 and 4 concentrate on location decision problems when there are externalities between decision makers. Chapter 3 focuses on the decision of business owners to open a store, when its demand is a function of other nearby stores, either through competition, or through spillovers on foot traffic. It uses a dynamic model in continuous time to model agents’ decisions. A particular challenge is isolating the contribution of spillovers from the contribution of other unobserved neighborhood attributes that could also lead to agglomeration. A key contribution of this chapter is showing how we can use information on storefront ownership to help separately identify spillovers.

Finally, chapter 4 focuses on a class of models in which families prefer to live

close to similar neighbors. This chapter provides the first simulation of such a model in which agents are forward looking, and shows that this leads to more segregation than it would have been observed with myopic agents, which is the standard in this literature. The chapter also discusses several extensions of the model that can be used to investigate relevant questions such as the arrival of a large contingent high skilled tech workers in San Francisco, the immigration of hispanic families to several southern American cities, large changes in local amenities, such as the construction of magnet schools or metro stations, and the flight of wealthy residents from cities in the Rust belt, such as Detroit.