4 resultados para systems and data security
em Duke University
Resumo:
An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions.
This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods.
On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.
In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.
We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,
and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy.
In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.
Resumo:
We recently developed an approach for testing the accuracy of network inference algorithms by applying them to biologically realistic simulations with known network topology. Here, we seek to determine the degree to which the network topology and data sampling regime influence the ability of our Bayesian network inference algorithm, NETWORKINFERENCE, to recover gene regulatory networks. NETWORKINFERENCE performed well at recovering feedback loops and multiple targets of a regulator with small amounts of data, but required more data to recover multiple regulators of a gene. When collecting the same number of data samples at different intervals from the system, the best recovery was produced by sampling intervals long enough such that sampling covered propagation of regulation through the network but not so long such that intervals missed internal dynamics. These results further elucidate the possibilities and limitations of network inference based on biological data.
Resumo:
Background: Sickle cell disease (SCD) is a debilitating genetic blood disorder that seriously impacts the quality of life of affected individuals and their families. With 85% of cases occurring in sub-Saharan Africa, it is essential to identify the barriers and facilitators of optimal outcomes for people with SCD in this setting. This study focuses on understanding the relationship between support systems and disease outcomes for SCD patients and their families in Cameroon and South Africa.
Methods: This mixed-methods study utilizes surveys and semi-structured interviews to assess the experiences of 29 SCD patients and 28 caregivers of people with SCD across three cities in two African countries: Cape Town, South Africa; Yaoundé, Cameroon; and Limbe, Cameroon.
Results: Patients in Cameroon had less treatment options, a higher frequency of pain crises, and a higher incidence of malaria than patients in South Africa. Social support networks in Cameroon consisted of both family and friends and provided emotional, financial, and physical assistance during pain crises and hospital admissions. In South Africa, patients relied on a strong medical support system and social support primarily from close family members; they were also diagnosed later in life than those in Cameroon.
Conclusions: The strength of medical support systems influences the reliance of SCD patients and their caregivers on social support systems. In Cameroon the health care system does not adequately address all factors of SCD treatment and social networks of family and friends are used to complement the care received. In South Africa, strong medical and social support systems positively affect SCD disease burden for patients and their caregivers. SCD awareness campaigns are necessary to reduce the incidence of SCD and create stronger social support networks through increased community understanding and decreased stigma.
Resumo:
The book also covers the Second Variation, Euler-Lagrange PDE systems, and higher-order conservation laws.