3 resultados para symplectic invariants

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

For any Legendrian knot in R^3 with the standard contact structure, we show that the existence of an augmentation to any field of the Chekanov-Eliashberg differential graded algebra over Z[t,t^{-1}] is equivalent to the existence of a normal ruling of the front diagram, generalizing results of Fuchs, Ishkhanov, and Sabloff. We also show that any even graded augmentation must send t to -1.

We extend the definition of a normal ruling from J^1(S^1) given by Lavrov and Rutherford to a normal ruling for Legendrian links in #^k(S^1\times S^2). We then show that for Legendrian links in J^1(S^1) and #^k(S^1\times S^2), the existence of an augmentation to any field of the Chekanov-Eliashberg differential graded algebra over Z[t,t^{-1}] is equivalent to the existence of a normal ruling of the front diagram. For Legendrian knots, we also show that any even graded augmentation must send t to -1. We use the correspondence to give nonvanishing results for the symplectic homology of certain Weinstein 4-manifolds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central idea of this dissertation is to interpret certain invariants constructed from Laplace spectral data on a compact Riemannian manifold as regularized integrals of closed differential forms on the space of Riemannian metrics, or more generally on a space of metrics on a vector bundle. We apply this idea to both the Ray-Singer analytic torsion

and the eta invariant, explaining their dependence on the metric used to define them with a Stokes' theorem argument. We also introduce analytic multi-torsion, a generalization of analytic torsion, in the context of certain manifolds with local product structure; we prove that it is metric independent in a suitable sense.