4 resultados para surface acoustic wave

em Duke University


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Four pigs, three with focal infarctions in the apical intraventricular septum (IVS) and/or left ventricular free wall (LVFW), were imaged with an intracardiac echocardiography (ICE) transducer. Custom beam sequences were used to excite the myocardium with focused acoustic radiation force (ARF) impulses and image the subsequent tissue response. Tissue displacement in response to the ARF excitation was calculated with a phase-based estimator, and transverse wave magnitude and velocity were each estimated at every depth. The excitation sequence was repeated rapidly, either in the same location to generate 40 Hz M-modes at a single steering angle, or with a modulated steering angle to synthesize 2-D displacement magnitude and shear wave velocity images at 17 points in the cardiac cycle. Both types of images were acquired from various views in the right and left ventricles, in and out of infarcted regions. In all animals, acoustic radiation force impulse (ARFI) and shear wave elasticity imaging (SWEI) estimates indicated diastolic relaxation and systolic contraction in noninfarcted tissues. The M-mode sequences showed high beat-to-beat spatio-temporal repeatability of the measurements for each imaging plane. In views of noninfarcted tissue in the diseased animals, no significant elastic remodeling was indicated when compared with the control. Where available, views of infarcted tissue were compared with similar views from the control animal. In views of the LVFW, the infarcted tissue presented as stiff and non-contractile compared with the control. In a view of the IVS, no significant difference was seen between infarcted and healthy tissue, whereas in another view, a heterogeneous infarction was seen to be presenting itself as non-contractile in systole.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We systematically investigated the surface plasmon resonance in one-dimensional (1D) subwavelength nanostructured metal films under the Kretschmann configuration. We calculated the reflectance, transmittance, and absorption for varying the dielectric fill factor, the period of the 1D nanostructure, and the metal film thickness. We have found that the small dielectric slits in the metal films reduce the surface plasmon resonance angle and move it toward the critical angle for total internal reflection. The reduction in surface plasmon resonance angle in nanostructured metal films is due to the increased intrinsic free electron oscillation frequency in metal nanostructures. Also we have found that the increasing the spatial frequency of the 1D nanograting reduces the surface plasmon resonance angle, which indicates that less momentum is needed to match the momentum of the surface plasmon-polariton. The variation in the nanostructured metal film thickness changes the resonance angle slightly, but mainly remains as a mean to adjust the coupling between the incident optical wave and the surface plasmon-polariton wave. © 2009 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a reflector insert, the original HM-3 lithotripter field at 20 kV was altered significantly with the peak positive pressure (p(+)) in the focal plane increased from 49 to 87 MPa while the -6 dB focal width decreased concomitantly from 11 to 4 mm. Using the original reflector, p(+) of 33 MPa with a -6 dB focal width of 18 mm were measured in a pre-focal plane 15-mm proximal to the lithotripter focus. However, the acoustic pulse energy delivered to a 28-mm diameter area around the lithotripter axis was comparable ( approximately 120 mJ). For all three exposure conditions, similar stone comminution ( approximately 70%) was produced in a mesh holder of 15 mm after 250 shocks. In contrast, stone comminution produced by the modified reflector either in a 15-mm finger cot (45%) or in a 30-mm membrane holder (14%) was significantly reduced from the corresponding values (56% and 26%) produced by the original reflector (no statistically significant differences were observed between the focal and pre-focal planes). These observations suggest that a low-pressure/broad focal width lithotripter field will produce better stone comminution than its counterpart with high-pressure/narrow focal width under clinically relevant in vitro comminution conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficiency of shock wave lithotripsy (SWL), a noninvasive first-line therapy for millions of nephrolithiasis patients, has not improved substantially in the past two decades, especially in regard to stone clearance. Here, we report a new acoustic lens design for a contemporary electromagnetic (EM) shock wave lithotripter, based on recently acquired knowledge of the key lithotripter field characteristics that correlate with efficient and safe SWL. The new lens design addresses concomitantly three fundamental drawbacks in EM lithotripters, namely, narrow focal width, nonidealized pulse profile, and significant misalignment in acoustic focus and cavitation activities with the target stone at high output settings. Key design features and performance of the new lens were evaluated using model calculations and experimental measurements against the original lens under comparable acoustic pulse energy (E+) of 40 mJ. The -6-dB focal width of the new lens was enhanced from 7.4 to 11 mm at this energy level, and peak pressure (41 MPa) and maximum cavitation activity were both realigned to be within 5 mm of the lithotripter focus. Stone comminution produced by the new lens was either statistically improved or similar to that of the original lens under various in vitro test conditions and was significantly improved in vivo in a swine model (89% vs. 54%, P = 0.01), and tissue injury was minimal using a clinical treatment protocol. The general principle and associated techniques described in this work can be applied to design improvement of all EM lithotripters.