7 resultados para sub-surface horizontal flow

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Minimally-invasive microsurgery has resulted in improved outcomes for patients. However, operating through a microscope limits depth perception and fixes the visual perspective, which result in a steep learning curve to achieve microsurgical proficiency. We introduce a surgical imaging system employing four-dimensional (live volumetric imaging through time) microscope-integrated optical coherence tomography (4D MIOCT) capable of imaging at up to 10 volumes per second to visualize human microsurgery. A custom stereoscopic heads-up display provides real-time interactive volumetric feedback to the surgeon. We report that 4D MIOCT enhanced suturing accuracy and control of instrument positioning in mock surgical trials involving 17 ophthalmic surgeons. Additionally, 4D MIOCT imaging was performed in 48 human eye surgeries and was demonstrated to successfully visualize the pathology of interest in concordance with preoperative diagnosis in 93% of retinal surgeries and the surgical site of interest in 100% of anterior segment surgeries. In vivo 4D MIOCT imaging revealed sub-surface pathologic structures and instrument-induced lesions that were invisible through the operating microscope during standard surgical maneuvers. In select cases, 4D MIOCT guidance was necessary to resolve such lesions and prevent post-operative complications. Our novel surgical visualization platform achieves surgeon-interactive 4D visualization of live surgery which could expand the surgeon's capabilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and distribution: in other words, cities will gain or lose water such that they become more similar to each other than are their surrounding natural landscapes. Using a database of more than 1 million water bodies and 1 million km of streams, we compared the surface water of 100 US cities with their surrounding undeveloped land. We evaluated differences in areal (A WB) and numeric densities (N WB) of water bodies (lakes, wetlands, and so on), the morphological characteristics of water bodies (size), and the density (D C) of surface flow channels (that is, streams and rivers). The variance of urban A WB, N WB, and D C across the 100 MSAs decreased, by 89, 25, and 71%, respectively, compared to undeveloped land. These data show that many cities are surface water poor relative to undeveloped land; however, in drier landscapes urbanization increases the occurrence of surface water. This convergence pattern strengthened with development intensity, such that high intensity urban development had an areal water body density 98% less than undeveloped lands. Urbanization appears to drive the convergence of hydrological features across the US, such that surface water distributions of cities are more similar to each other than to their surrounding landscapes. © 2014 The Author(s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although small-scale spatial flow variability can affect both larger-scale circulation patterns and biological processes on coral reefs, there are few direct measurements of spatial flow patterns across horizontal scales <100 m. Here flow patterns on a shallow reef flat were measured at scales from a single colony to several adjacent colonies using an array of acoustic Doppler velocimeters on a diver-operated traverse. We observed recirculation zones immediately behind colonies, reduced currents and elevated dissipation rates in turbulent wakes up to 2 colony diameters downstream and enhanced Reynolds stresses in shear layers around wake peripheries. Flow acceleration zones were observed above and between colonies. Coherent flow structures varied with incident flow speeds; recirculation zones were stronger and wakes were more turbulent in faster flows. Low-frequency (<0.03 Hz) flow variations, for which water excursions were large compared with the colony diameters (Keulegan-Carpenter number, KC >1), had similarspatial patterns to wakes, while higher-frequency variations (0.05-0.1 Hz, KC<1) had no observable spatial structure. On the reef flat, both drag and inertial forces exerted by coral colonies could have significant effects on flow, but within different frequency ranges; drag dominates for low-frequency flow variations and inertial forces dominate for higher frequency variations, including the wave band. Our scaling analyses suggest that spatial flow patterns at colony and patch scales could have important implications or both physical and biological processes at larger reef scales through their effects on forces exerted on the flow, turbulent mixing, and dispersion. © 2013. American Geophysical Union. All Rights Reserved.