9 resultados para stochastic process

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

While molecular and cellular processes are often modeled as stochastic processes, such as Brownian motion, chemical reaction networks and gene regulatory networks, there are few attempts to program a molecular-scale process to physically implement stochastic processes. DNA has been used as a substrate for programming molecular interactions, but its applications are restricted to deterministic functions and unfavorable properties such as slow processing, thermal annealing, aqueous solvents and difficult readout limit them to proof-of-concept purposes. To date, whether there exists a molecular process that can be programmed to implement stochastic processes for practical applications remains unknown.

In this dissertation, a fully specified Resonance Energy Transfer (RET) network between chromophores is accurately fabricated via DNA self-assembly, and the exciton dynamics in the RET network physically implement a stochastic process, specifically a continuous-time Markov chain (CTMC), which has a direct mapping to the physical geometry of the chromophore network. Excited by a light source, a RET network generates random samples in the temporal domain in the form of fluorescence photons which can be detected by a photon detector. The intrinsic sampling distribution of a RET network is derived as a phase-type distribution configured by its CTMC model. The conclusion is that the exciton dynamics in a RET network implement a general and important class of stochastic processes that can be directly and accurately programmed and used for practical applications of photonics and optoelectronics. Different approaches to using RET networks exist with vast potential applications. As an entropy source that can directly generate samples from virtually arbitrary distributions, RET networks can benefit applications that rely on generating random samples such as 1) fluorescent taggants and 2) stochastic computing.

By using RET networks between chromophores to implement fluorescent taggants with temporally coded signatures, the taggant design is not constrained by resolvable dyes and has a significantly larger coding capacity than spectrally or lifetime coded fluorescent taggants. Meanwhile, the taggant detection process becomes highly efficient, and the Maximum Likelihood Estimation (MLE) based taggant identification guarantees high accuracy even with only a few hundred detected photons.

Meanwhile, RET-based sampling units (RSU) can be constructed to accelerate probabilistic algorithms for wide applications in machine learning and data analytics. Because probabilistic algorithms often rely on iteratively sampling from parameterized distributions, they can be inefficient in practice on the deterministic hardware traditional computers use, especially for high-dimensional and complex problems. As an efficient universal sampling unit, the proposed RSU can be integrated into a processor / GPU as specialized functional units or organized as a discrete accelerator to bring substantial speedups and power savings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a stochastic process driven by a linear ordinary differential equation whose right-hand side switches at exponential times between a collection of different matrices. We construct planar examples that switch between two matrices where the individual matrices and the average of the two matrices are all Hurwitz (all eigenvalues have strictly negative real part), but nonetheless the process goes to infinity at large time for certain values of the switching rate. We further construct examples in higher dimensions where again the two individual matrices and their averages are all Hurwitz, but the process has arbitrarily many transitions between going to zero and going to infinity at large time as the switching rate varies. In order to construct these examples, we first prove in general that if each of the individual matrices is Hurwitz, then the process goes to zero at large time for sufficiently slow switching rate and if the average matrix is Hurwitz, then the process goes to zero at large time for sufficiently fast switching rate. We also give simple conditions that ensure the process goes to zero at large time for all switching rates. © 2014 International Press.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamics of a population undergoing selection is a central topic in evolutionary biology. This question is particularly intriguing in the case where selective forces act in opposing directions at two population scales. For example, a fast-replicating virus strain outcompetes slower-replicating strains at the within-host scale. However, if the fast-replicating strain causes host morbidity and is less frequently transmitted, it can be outcompeted by slower-replicating strains at the between-host scale. Here we consider a stochastic ball-and-urn process which models this type of phenomenon. We prove the weak convergence of this process under two natural scalings. The first scaling leads to a deterministic nonlinear integro-partial differential equation on the interval $[0,1]$ with dependence on a single parameter, $\lambda$. We show that the fixed points of this differential equation are Beta distributions and that their stability depends on $\lambda$ and the behavior of the initial data around $1$. The second scaling leads to a measure-valued Fleming-Viot process, an infinite dimensional stochastic process that is frequently associated with a population genetics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamics of a population undergoing selection is a central topic in evolutionary biology. This question is particularly intriguing in the case where selective forces act in opposing directions at two population scales. For example, a fast-replicating virus strain outcompetes slower-replicating strains at the within-host scale. However, if the fast-replicating strain causes host morbidity and is less frequently transmitted, it can be outcompeted by slower-replicating strains at the between-host scale. Here we consider a stochastic ball-and-urn process which models this type of phenomenon. We prove the weak convergence of this process under two natural scalings. The first scaling leads to a deterministic nonlinear integro-partial differential equation on the interval $[0,1]$ with dependence on a single parameter, $\lambda$. We show that the fixed points of this differential equation are Beta distributions and that their stability depends on $\lambda$ and the behavior of the initial data around $1$. The second scaling leads to a measure-valued Fleming-Viot process, an infinite dimensional stochastic process that is frequently associated with a population genetics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We exploit the distributional information contained in high-frequency intraday data in constructing a simple conditional moment estimator for stochastic volatility diffusions. The estimator is based on the analytical solutions of the first two conditional moments for the latent integrated volatility, the realization of which is effectively approximated by the sum of the squared high-frequency increments of the process. Our simulation evidence indicates that the resulting GMM estimator is highly reliable and accurate. Our empirical implementation based on high-frequency five-minute foreign exchange returns suggests the presence of multiple latent stochastic volatility factors and possible jumps. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transition of the mammalian cell from quiescence to proliferation is a highly variable process. Over the last four decades, two lines of apparently contradictory, phenomenological models have been proposed to account for such temporal variability. These include various forms of the transition probability (TP) model and the growth control (GC) model, which lack mechanistic details. The GC model was further proposed as an alternative explanation for the concept of the restriction point, which we recently demonstrated as being controlled by a bistable Rb-E2F switch. Here, through a combination of modeling and experiments, we show that these different lines of models in essence reflect different aspects of stochastic dynamics in cell cycle entry. In particular, we show that the variable activation of E2F can be described by stochastic activation of the bistable Rb-E2F switch, which in turn may account for the temporal variability in cell cycle entry. Moreover, we show that temporal dynamics of E2F activation can be recast into the frameworks of both the TP model and the GC model via parameter mapping. This mapping suggests that the two lines of phenomenological models can be reconciled through the stochastic dynamics of the Rb-E2F switch. It also suggests a potential utility of the TP or GC models in defining concise, quantitative phenotypes of cell physiology. This may have implications in classifying cell types or states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2015 Society for Industrial and Applied Mathematics.We consider parabolic PDEs with randomly switching boundary conditions. In order to analyze these random PDEs, we consider more general stochastic hybrid systems and prove convergence to, and properties of, a stationary distribution. Applying these general results to the heat equation with randomly switching boundary conditions, we find explicit formulae for various statistics of the solution and obtain almost sure results about its regularity and structure. These results are of particular interest for biological applications as well as for their significant departure from behavior seen in PDEs forced by disparate Gaussian noise. Our general results also have applications to other types of stochastic hybrid systems, such as ODEs with randomly switching right-hand sides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this dissertation, we develop a novel methodology for characterizing and simulating nonstationary, full-field, stochastic turbulent wind fields.

In this new method, nonstationarity is characterized and modeled via temporal coherence, which is quantified in the discrete frequency domain by probability distributions of the differences in phase between adjacent Fourier components.

The empirical distributions of the phase differences can also be extracted from measured data, and the resulting temporal coherence parameters can quantify the occurrence of nonstationarity in empirical wind data.

This dissertation (1) implements temporal coherence in a desktop turbulence simulator, (2) calibrates empirical temporal coherence models for four wind datasets, and (3) quantifies the increase in lifetime wind turbine loads caused by temporal coherence.

The four wind datasets were intentionally chosen from locations around the world so that they had significantly different ambient atmospheric conditions.

The prevalence of temporal coherence and its relationship to other standard wind parameters was modeled through empirical joint distributions (EJDs), which involved fitting marginal distributions and calculating correlations.

EJDs have the added benefit of being able to generate samples of wind parameters that reflect the characteristics of a particular site.

Lastly, to characterize the effect of temporal coherence on design loads, we created four models in the open-source wind turbine simulator FAST based on the \windpact turbines, fit response surfaces to them, and used the response surfaces to calculate lifetime turbine responses to wind fields simulated with and without temporal coherence.

The training data for the response surfaces was generated from exhaustive FAST simulations that were run on the high-performance computing (HPC) facilities at the National Renewable Energy Laboratory.

This process was repeated for wind field parameters drawn from the empirical distributions and for wind samples drawn using the recommended procedure in the wind turbine design standard \iec.

The effect of temporal coherence was calculated as a percent increase in the lifetime load over the base value with no temporal coherence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A RET network consists of a network of photo-active molecules called chromophores that can participate in inter-molecular energy transfer called resonance energy transfer (RET). RET networks are used in a variety of applications including cryptographic devices, storage systems, light harvesting complexes, biological sensors, and molecular rulers. In this dissertation, we focus on creating a RET device called closed-diffusive exciton valve (C-DEV) in which the input to output transfer function is controlled by an external energy source, similar to a semiconductor transistor like the MOSFET. Due to their biocompatibility, molecular devices like the C-DEVs can be used to introduce computing power in biological, organic, and aqueous environments such as living cells. Furthermore, the underlying physics in RET devices are stochastic in nature, making them suitable for stochastic computing in which true random distribution generation is critical.

In order to determine a valid configuration of chromophores for the C-DEV, we developed a systematic process based on user-guided design space pruning techniques and built-in simulation tools. We show that our C-DEV is 15x better than C-DEVs designed using ad hoc methods that rely on limited data from prior experiments. We also show ways in which the C-DEV can be improved further and how different varieties of C-DEVs can be combined to form more complex logic circuits. Moreover, the systematic design process can be used to search for valid chromophore network configurations for a variety of RET applications.

We also describe a feasibility study for a technique used to control the orientation of chromophores attached to DNA. Being able to control the orientation can expand the design space for RET networks because it provides another parameter to tune their collective behavior. While results showed limited control over orientation, the analysis required the development of a mathematical model that can be used to determine the distribution of dipoles in a given sample of chromophore constructs. The model can be used to evaluate the feasibility of other potential orientation control techniques.