3 resultados para steroid

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organisms in the wild develop with varying food availability. During periods of nutritional scarcity, development may slow or arrest until conditions improve. The ability to modulate developmental programs in response to poor nutritional conditions requires a means of sensing the changing nutritional environment and limiting tissue growth. The mechanisms by which organisms accomplish this adaptation are not well understood. We sought to study this question by examining the effects of nutrient deprivation on Caenorhabditis elegans development during the late larval stages, L3 and L4, a period of extensive tissue growth and morphogenesis. By removing animals from food at different times, we show here that specific checkpoints exist in the early L3 and early L4 stages that systemically arrest the development of diverse tissues and cellular processes. These checkpoints occur once in each larval stage after molting and prior to initiation of the subsequent molting cycle. DAF-2, the insulin/insulin-like growth factor receptor, regulates passage through the L3 and L4 checkpoints in response to nutrition. The FOXO transcription factor DAF-16, a major target of insulin-like signaling, functions cell-nonautonomously in the hypodermis (skin) to arrest developmental upon nutrient removal. The effects of DAF-16 on progression through the L3 and L4 stages are mediated by DAF-9, a cytochrome P450 ortholog involved in the production of C. elegans steroid hormones. Our results identify a novel mode of C. elegans growth in which development progresses from one checkpoint to the next. At each checkpoint, nutritional conditions determine whether animals remain arrested or continue development to the next checkpoint.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Animals must coordinate development with fluctuating nutrient availability. Nutrient availability governs post-embryonic development in Caenorhabditis elegans: larvae that hatch in the absence of food do not initiate post-embryonic development but enter "L1 arrest" (or "L1 diapause") and can survive starvation for weeks, while rapidly resume normal development once get fed. Insulin-like signaling (IIS) has been shown to be a key regulator of L1 arrest and recovery. However, the C. elegans genome encodes 40 insulin-like peptides (ILPs), and it is unknown which peptides participate in nutritional control of L1 arrest and recovery. Work in other contexts has identified putative receptor agonists and antagonists, but the extent of specificity versus redundancy is unclear beyond this distinction.

We measured mRNA expression dynamics with high temporal resolution for all 40 insulin-like genes during entry into and recovery from L1 arrest. Nutrient availability influences expression of the majority of insulin-like genes, with variable dynamics suggesting complex regulation. We identified 13 candidate agonists and 8 candidate antagonists based on expression in response to nutrient availability. We selected ten candidate agonists (daf-28, ins-3, ins-4, ins-5, ins-6, ins-7, ins-9, ins-26, ins-33 and ins-35) for further characterization in L1 stage larvae. We used destabilized reporter genes to determine spatial expression patterns. Expression of candidate agonists was largely overlapping in L1 stage larvae, suggesting a role of the intestine, chemosensory neurons ASI and ASJ, and the interneuron PVT in systemic control of L1 development. Transcriptional regulation of candidate agonists was most significant in the intestine, as if nutrient uptake was a more important influence on transcription than sensory perception. Scanning in the 5' upstream promoter region of these 40 ILPs, We found that transcription factor PQM-1 and GATA putative binding sites are depleted in the promoter region of antagonists. A novel motif was also found to be over-represented in ILPs.

Phenotypic analysis of single and compound deletion mutants did not reveal effects on L1 recovery/developmental dynamics, though simultaneous disruption of ins-4 and daf-28 extended survival of L1 arrest without enhancing thermal tolerance, while overexpression of ins-4, ins-6 or daf-28 shortened L1 survival. Simultaneous disruption of several ILPs showed a temperature independent, transient dauer phenotype. These results revealed the relative redundancy and specificity among agonistic ILPs.

TGF- β and steroid hormone (SH) signaling have been reported to control the dauer formation along with IIS. Our preliminary results suggest they may also mediate the IIS control of L1 arrest and recovery, as the expression of several key components of TGF-β and SH signaling pathway genes are negatively regulated by DAF-16, and loss-of-function of these genes partially represses daf-16 null phenotype in L1 arrest, and causes a retardation in L1 development.

In summary, my dissertation study focused on the IIS, characterized the dynamics and sites of ILPs expression in response to nutrient availability, revealed the function of specific agonistic ILPs in L1 arrest, and suggested potential cross-regulation among IIS, TGF-β signaling and SH signaling in controlling L1 arrest and recovery. These findings provide insights into how post-embryonic development is governed by insulin-like signaling and nutrient availability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Mutations in podocin (NPHS2) are the most common cause of childhood onset autosomal recessive steroid-resistant nephrotic syndrome (SRNS). The disease is characterized by early-onset proteinuria, resistance to immunosuppressive therapy and rapid progression to end-stage renal disease. Compound heterozygous changes involving the podocin variant R229Q combined with another pathogenic mutation have been associated with a mild phenotype with disease onset often in adulthood. METHODS: We screened 19 families with early-onset SRNS for mutations in NPHS2 and WT1 and identified four disease-causing mutations (three in NPHS2 and one in WT1) prior to planned whole-exome sequencing. RESULTS: We describe two families with three individuals presenting in childhood who are compound heterozygous for R229Q and one other pathogenic NPHS2 mutation, either L327F or A297V. One child presented at age 4 years (A297V plus R229Q) and the other two at age 13 (L327F plus R229Q), one with steadily deteriorating renal function. CONCLUSIONS: These cases highlight the phenotypic variability associated with the NPHS2 R229Q variant plus pathogenic mutation. Individuals may present with early aggressive disease.