15 resultados para statistical methods

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Dropouts and missing data are nearly-ubiquitous in obesity randomized controlled trails, threatening validity and generalizability of conclusions. Herein, we meta-analytically evaluate the extent of missing data, the frequency with which various analytic methods are employed to accommodate dropouts, and the performance of multiple statistical methods. METHODOLOGY/PRINCIPAL FINDINGS: We searched PubMed and Cochrane databases (2000-2006) for articles published in English and manually searched bibliographic references. Articles of pharmaceutical randomized controlled trials with weight loss or weight gain prevention as major endpoints were included. Two authors independently reviewed each publication for inclusion. 121 articles met the inclusion criteria. Two authors independently extracted treatment, sample size, drop-out rates, study duration, and statistical method used to handle missing data from all articles and resolved disagreements by consensus. In the meta-analysis, drop-out rates were substantial with the survival (non-dropout) rates being approximated by an exponential decay curve (e(-lambdat)) where lambda was estimated to be .0088 (95% bootstrap confidence interval: .0076 to .0100) and t represents time in weeks. The estimated drop-out rate at 1 year was 37%. Most studies used last observation carried forward as the primary analytic method to handle missing data. We also obtained 12 raw obesity randomized controlled trial datasets for empirical analyses. Analyses of raw randomized controlled trial data suggested that both mixed models and multiple imputation performed well, but that multiple imputation may be more robust when missing data are extensive. CONCLUSION/SIGNIFICANCE: Our analysis offers an equation for predictions of dropout rates useful for future study planning. Our raw data analyses suggests that multiple imputation is better than other methods for handling missing data in obesity randomized controlled trials, followed closely by mixed models. We suggest these methods supplant last observation carried forward as the primary method of analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Constant technology advances have caused data explosion in recent years. Accord- ingly modern statistical and machine learning methods must be adapted to deal with complex and heterogeneous data types. This phenomenon is particularly true for an- alyzing biological data. For example DNA sequence data can be viewed as categorical variables with each nucleotide taking four different categories. The gene expression data, depending on the quantitative technology, could be continuous numbers or counts. With the advancement of high-throughput technology, the abundance of such data becomes unprecedentedly rich. Therefore efficient statistical approaches are crucial in this big data era.

Previous statistical methods for big data often aim to find low dimensional struc- tures in the observed data. For example in a factor analysis model a latent Gaussian distributed multivariate vector is assumed. With this assumption a factor model produces a low rank estimation of the covariance of the observed variables. Another example is the latent Dirichlet allocation model for documents. The mixture pro- portions of topics, represented by a Dirichlet distributed variable, is assumed. This dissertation proposes several novel extensions to the previous statistical methods that are developed to address challenges in big data. Those novel methods are applied in multiple real world applications including construction of condition specific gene co-expression networks, estimating shared topics among newsgroups, analysis of pro- moter sequences, analysis of political-economics risk data and estimating population structure from genotype data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Current state of the art techniques for landmine detection in ground penetrating radar (GPR) utilize statistical methods to identify characteristics of a landmine response. This research makes use of 2-D slices of data in which subsurface landmine responses have hyperbolic shapes. Various methods from the field of visual image processing are adapted to the 2-D GPR data, producing superior landmine detection results. This research goes on to develop a physics-based GPR augmentation method motivated by current advances in visual object detection. This GPR specific augmentation is used to mitigate issues caused by insufficient training sets. This work shows that augmentation improves detection performance under training conditions that are normally very difficult. Finally, this work introduces the use of convolutional neural networks as a method to learn feature extraction parameters. These learned convolutional features outperform hand-designed features in GPR detection tasks. This work presents a number of methods, both borrowed from and motivated by the substantial work in visual image processing. The methods developed and presented in this work show an improvement in overall detection performance and introduce a method to improve the robustness of statistical classification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A steady increase in knowledge of the molecular and antigenic structure of the gp120 and gp41 HIV-1 envelope glycoproteins (Env) is yielding important new insights for vaccine design, but it has been difficult to translate this information to an immunogen that elicits broadly neutralizing antibodies. To help bridge this gap, we used phylogenetically corrected statistical methods to identify amino acid signature patterns in Envs derived from people who have made potently neutralizing antibodies, with the hypothesis that these Envs may share common features that would be useful for incorporation in a vaccine immunogen. Before attempting this, essentially as a control, we explored the utility of our computational methods for defining signatures of complex neutralization phenotypes by analyzing Env sequences from 251 clonal viruses that were differentially sensitive to neutralization by the well-characterized gp120-specific monoclonal antibody, b12. We identified ten b12-neutralization signatures, including seven either in the b12-binding surface of gp120 or in the V2 region of gp120 that have been previously shown to impact b12 sensitivity. A simple algorithm based on the b12 signature pattern was predictive of b12 sensitivity/resistance in an additional blinded panel of 57 viruses. Upon obtaining these reassuring outcomes, we went on to apply these same computational methods to define signature patterns in Env from HIV-1 infected individuals who had potent, broadly neutralizing responses. We analyzed a checkerboard-style neutralization dataset with sera from 69 HIV-1-infected individuals tested against a panel of 25 different Envs. Distinct clusters of sera with high and low neutralization potencies were identified. Six signature positions in Env sequences obtained from the 69 samples were found to be strongly associated with either the high or low potency responses. Five sites were in the CD4-induced coreceptor binding site of gp120, suggesting an important role for this region in the elicitation of broadly neutralizing antibody responses against HIV-1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The inherent complexity of statistical methods and clinical phenomena compel researchers with diverse domains of expertise to work in interdisciplinary teams, where none of them have a complete knowledge in their counterpart's field. As a result, knowledge exchange may often be characterized by miscommunication leading to misinterpretation, ultimately resulting in errors in research and even clinical practice. Though communication has a central role in interdisciplinary collaboration and since miscommunication can have a negative impact on research processes, to the best of our knowledge, no study has yet explored how data analysis specialists and clinical researchers communicate over time. METHODS/PRINCIPAL FINDINGS: We conducted qualitative analysis of encounters between clinical researchers and data analysis specialists (epidemiologist, clinical epidemiologist, and data mining specialist). These encounters were recorded and systematically analyzed using a grounded theory methodology for extraction of emerging themes, followed by data triangulation and analysis of negative cases for validation. A policy analysis was then performed using a system dynamics methodology looking for potential interventions to improve this process. Four major emerging themes were found. Definitions using lay language were frequently employed as a way to bridge the language gap between the specialties. Thought experiments presented a series of "what if" situations that helped clarify how the method or information from the other field would behave, if exposed to alternative situations, ultimately aiding in explaining their main objective. Metaphors and analogies were used to translate concepts across fields, from the unfamiliar to the familiar. Prolepsis was used to anticipate study outcomes, thus helping specialists understand the current context based on an understanding of their final goal. CONCLUSION/SIGNIFICANCE: The communication between clinical researchers and data analysis specialists presents multiple challenges that can lead to errors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complex diseases will have multiple functional sites, and it will be invaluable to understand the cross-locus interaction in terms of linkage disequilibrium (LD) between those sites (epistasis) in addition to the haplotype-LD effects. We investigated the statistical properties of a class of matrix-based statistics to assess this epistasis. These statistical methods include two LD contrast tests (Zaykin et al., 2006) and partial least squares regression (Wang et al., 2008). To estimate Type 1 error rates and power, we simulated multiple two-variant disease models using the SIMLA software package. SIMLA allows for the joint action of up to two disease genes in the simulated data with all possible multiplicative interaction effects between them. Our goal was to detect an interaction between multiple disease-causing variants by means of their linkage disequilibrium (LD) patterns with other markers. We measured the effects of marginal disease effect size, haplotype LD, disease prevalence and minor allele frequency have on cross-locus interaction (epistasis). In the setting of strong allele effects and strong interaction, the correlation between the two disease genes was weak (r=0.2). In a complex system with multiple correlations (both marginal and interaction), it was difficult to determine the source of a significant result. Despite these complications, the partial least squares and modified LD contrast methods maintained adequate power to detect the epistatic effects; however, for many of the analyses we often could not separate interaction from a strong marginal effect. While we did not exhaust the entire parameter space of possible models, we do provide guidance on the effects that population parameters have on cross-locus interaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Evidence is lacking to inform providers' and patients' decisions about many common treatment strategies for patients with end stage renal disease (ESRD). METHODS/DESIGN: The DEcIDE Patient Outcomes in ESRD Study is funded by the United States (US) Agency for Health Care Research and Quality to study the comparative effectiveness of: 1) antihypertensive therapies, 2) early versus later initiation of dialysis, and 3) intravenous iron therapies on clinical outcomes in patients with ESRD. Ongoing studies utilize four existing, nationally representative cohorts of patients with ESRD, including (1) the Choices for Healthy Outcomes in Caring for ESRD study (1041 incident dialysis patients recruited from October 1995 to June 1999 with complete outcome ascertainment through 2009), (2) the Dialysis Clinic Inc (45,124 incident dialysis patients initiating and receiving their care from 2003-2010 with complete outcome ascertainment through 2010), (3) the United States Renal Data System (333,308 incident dialysis patients from 2006-2009 with complete outcome ascertainment through 2010), and (4) the Cleveland Clinic Foundation Chronic Kidney Disease Registry (53,399 patients with chronic kidney disease with outcome ascertainment from 2005 through 2009). We ascertain patient reported outcomes (i.e., health-related quality of life), morbidity, and mortality using clinical and administrative data, and data obtained from national death indices. We use advanced statistical methods (e.g., propensity scoring and marginal structural modeling) to account for potential biases of our study designs. All data are de-identified for analyses. The conduct of studies and dissemination of findings are guided by input from Stakeholders in the ESRD community. DISCUSSION: The DEcIDE Patient Outcomes in ESRD Study will provide needed evidence regarding the effectiveness of common treatments employed for dialysis patients. Carefully planned dissemination strategies to the ESRD community will enhance studies' impact on clinical care and patients' outcomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nolan and Temple Lang argue that “the ability to express statistical computations is an es- sential skill.” A key related capacity is the ability to conduct and present data analysis in a way that another person can understand and replicate. The copy-and-paste workflow that is an artifact of antiquated user-interface design makes reproducibility of statistical analysis more difficult, especially as data become increasingly complex and statistical methods become increasingly sophisticated. R Markdown is a new technology that makes creating fully-reproducible statistical analysis simple and painless. It provides a solution suitable not only for cutting edge research, but also for use in an introductory statistics course. We present experiential and statistical evidence that R Markdown can be used effectively in introductory statistics courses, and discuss its role in the rapidly-changing world of statistical computation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions.

This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods.

On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.

In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.

We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,

and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy.

In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

© 2014, The International Biometric Society.A potential venue to improve healthcare efficiency is to effectively tailor individualized treatment strategies by incorporating patient level predictor information such as environmental exposure, biological, and genetic marker measurements. Many useful statistical methods for deriving individualized treatment rules (ITR) have become available in recent years. Prior to adopting any ITR in clinical practice, it is crucial to evaluate its value in improving patient outcomes. Existing methods for quantifying such values mainly consider either a single marker or semi-parametric methods that are subject to bias under model misspecification. In this article, we consider a general setting with multiple markers and propose a two-step robust method to derive ITRs and evaluate their values. We also propose procedures for comparing different ITRs, which can be used to quantify the incremental value of new markers in improving treatment selection. While working models are used in step I to approximate optimal ITRs, we add a layer of calibration to guard against model misspecification and further assess the value of the ITR non-parametrically, which ensures the validity of the inference. To account for the sampling variability of the estimated rules and their corresponding values, we propose a resampling procedure to provide valid confidence intervals for the value functions as well as for the incremental value of new markers for treatment selection. Our proposals are examined through extensive simulation studies and illustrated with the data from a clinical trial that studies the effects of two drug combinations on HIV-1 infected patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work explores the use of statistical methods in describing and estimating camera poses, as well as the information feedback loop between camera pose and object detection. Surging development in robotics and computer vision has pushed the need for algorithms that infer, understand, and utilize information about the position and orientation of the sensor platforms when observing and/or interacting with their environment.

The first contribution of this thesis is the development of a set of statistical tools for representing and estimating the uncertainty in object poses. A distribution for representing the joint uncertainty over multiple object positions and orientations is described, called the mirrored normal-Bingham distribution. This distribution generalizes both the normal distribution in Euclidean space, and the Bingham distribution on the unit hypersphere. It is shown to inherit many of the convenient properties of these special cases: it is the maximum-entropy distribution with fixed second moment, and there is a generalized Laplace approximation whose result is the mirrored normal-Bingham distribution. This distribution and approximation method are demonstrated by deriving the analytical approximation to the wrapped-normal distribution. Further, it is shown how these tools can be used to represent the uncertainty in the result of a bundle adjustment problem.

Another application of these methods is illustrated as part of a novel camera pose estimation algorithm based on object detections. The autocalibration task is formulated as a bundle adjustment problem using prior distributions over the 3D points to enforce the objects' structure and their relationship with the scene geometry. This framework is very flexible and enables the use of off-the-shelf computational tools to solve specialized autocalibration problems. Its performance is evaluated using a pedestrian detector to provide head and foot location observations, and it proves much faster and potentially more accurate than existing methods.

Finally, the information feedback loop between object detection and camera pose estimation is closed by utilizing camera pose information to improve object detection in scenarios with significant perspective warping. Methods are presented that allow the inverse perspective mapping traditionally applied to images to be applied instead to features computed from those images. For the special case of HOG-like features, which are used by many modern object detection systems, these methods are shown to provide substantial performance benefits over unadapted detectors while achieving real-time frame rates, orders of magnitude faster than comparable image warping methods.

The statistical tools and algorithms presented here are especially promising for mobile cameras, providing the ability to autocalibrate and adapt to the camera pose in real time. In addition, these methods have wide-ranging potential applications in diverse areas of computer vision, robotics, and imaging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dissertation consists of three chapters related to the low-price guarantee marketing strategy and energy efficiency analysis. The low-price guarantee is a marketing strategy in which firms promise to charge consumers the lowest price among their competitors. Chapter 1 addresses the research question "Does a Low-Price Guarantee Induce Lower Prices'' by looking into the retail gasoline industry in Quebec where there was a major branded firm which started a low-price guarantee back in 1996. Chapter 2 does a consumer welfare analysis of low-price guarantees to drive police indications and offers a new explanation of the firms' incentives to adopt a low-price guarantee. Chapter 3 develops the energy performance indicators (EPIs) to measure energy efficiency of the manufacturing plants in pulp, paper and paperboard industry.

Chapter 1 revisits the traditional view that a low-price guarantee results in higher prices by facilitating collusion. Using accurate market definitions and station-level data from the retail gasoline industry in Quebec, I conducted a descriptive analysis based on stations and price zones to compare the price and sales movement before and after the guarantee was adopted. I find that, contrary to the traditional view, the stores that offered the guarantee significantly decreased their prices and increased their sales. I also build a difference-in-difference model to quantify the decrease in posted price of the stores that offered the guarantee to be 0.7 cents per liter. While this change is significant, I do not find the response in comeptitors' prices to be significant. The sales of the stores that offered the guarantee increased significantly while the competitors' sales decreased significantly. However, the significance vanishes if I use the station clustered standard errors. Comparing my observations and the predictions of different theories of modeling low-price guarantees, I conclude the empirical evidence here supports that the low-price guarantee is a simple commitment device and induces lower prices.

Chapter 2 conducts a consumer welfare analysis of low-price guarantees to address the antitrust concerns and potential regulations from the government; explains the firms' potential incentives to adopt a low-price guarantee. Using station-level data from the retail gasoline industry in Quebec, I estimated consumers' demand of gasoline by a structural model with spatial competition incorporating the low-price guarantee as a commitment device, which allows firms to pre-commit to charge the lowest price among their competitors. The counterfactual analysis under the Bertrand competition setting shows that the stores that offered the guarantee attracted a lot more consumers and decreased their posted price by 0.6 cents per liter. Although the matching stores suffered a decrease in profits from gasoline sales, they are incentivized to adopt the low-price guarantee to attract more consumers to visit the store likely increasing profits at attached convenience stores. Firms have strong incentives to adopt a low-price guarantee on the product that their consumers are most price-sensitive about, while earning a profit from the products that are not covered in the guarantee. I estimate that consumers earn about 0.3% more surplus when the low-price guarantee is in place, which suggests that the authorities should not be concerned and regulate low-price guarantees. In Appendix B, I also propose an empirical model to look into how low-price guarantees would change consumer search behavior and whether consumer search plays an important role in estimating consumer surplus accurately.

Chapter 3, joint with Gale Boyd, describes work with the pulp, paper, and paperboard (PP&PB) industry to provide a plant-level indicator of energy efficiency for facilities that produce various types of paper products in the United States. Organizations that implement strategic energy management programs undertake a set of activities that, if carried out properly, have the potential to deliver sustained energy savings. Energy performance benchmarking is a key activity of strategic energy management and one way to enable companies to set energy efficiency targets for manufacturing facilities. The opportunity to assess plant energy performance through a comparison with similar plants in its industry is a highly desirable and strategic method of benchmarking for industrial energy managers. However, access to energy performance data for conducting industry benchmarking is usually unavailable to most industrial energy managers. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR program, seeks to overcome this barrier through the development of manufacturing sector-based plant energy performance indicators (EPIs) that encourage U.S. industries to use energy more efficiently. In the development of the energy performance indicator tools, consideration is given to the role that performance-based indicators play in motivating change; the steps necessary for indicator development, from interacting with an industry in securing adequate data for the indicator; and actual application and use of an indicator when complete. How indicators are employed in EPA’s efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The chapter describes the data and statistical methods used to construct the EPI for plants within selected segments of the pulp, paper, and paperboard industry: specifically pulp mills and integrated paper & paperboard mills. The individual equations are presented, as are the instructions for using those equations as implemented in an associated Microsoft Excel-based spreadsheet tool.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work presented in this dissertation is focused on applying engineering methods to develop and explore probabilistic survival models for the prediction of decompression sickness in US NAVY divers. Mathematical modeling, computational model development, and numerical optimization techniques were employed to formulate and evaluate the predictive quality of models fitted to empirical data. In Chapters 1 and 2 we present general background information relevant to the development of probabilistic models applied to predicting the incidence of decompression sickness. The remainder of the dissertation introduces techniques developed in an effort to improve the predictive quality of probabilistic decompression models and to reduce the difficulty of model parameter optimization.

The first project explored seventeen variations of the hazard function using a well-perfused parallel compartment model. Models were parametrically optimized using the maximum likelihood technique. Model performance was evaluated using both classical statistical methods and model selection techniques based on information theory. Optimized model parameters were overall similar to those of previously published Results indicated that a novel hazard function definition that included both ambient pressure scaling and individually fitted compartment exponent scaling terms.

We developed ten pharmacokinetic compartmental models that included explicit delay mechanics to determine if predictive quality could be improved through the inclusion of material transfer lags. A fitted discrete delay parameter augmented the inflow to the compartment systems from the environment. Based on the observation that symptoms are often reported after risk accumulation begins for many of our models, we hypothesized that the inclusion of delays might improve correlation between the model predictions and observed data. Model selection techniques identified two models as having the best overall performance, but comparison to the best performing model without delay and model selection using our best identified no delay pharmacokinetic model both indicated that the delay mechanism was not statistically justified and did not substantially improve model predictions.

Our final investigation explored parameter bounding techniques to identify parameter regions for which statistical model failure will not occur. When a model predicts a no probability of a diver experiencing decompression sickness for an exposure that is known to produce symptoms, statistical model failure occurs. Using a metric related to the instantaneous risk, we successfully identify regions where model failure will not occur and identify the boundaries of the region using a root bounding technique. Several models are used to demonstrate the techniques, which may be employed to reduce the difficulty of model optimization for future investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With increasing recognition of the roles RNA molecules and RNA/protein complexes play in an unexpected variety of biological processes, understanding of RNA structure-function relationships is of high current importance. To make clean biological interpretations from three-dimensional structures, it is imperative to have high-quality, accurate RNA crystal structures available, and the community has thoroughly embraced that goal. However, due to the many degrees of freedom inherent in RNA structure (especially for the backbone), it is a significant challenge to succeed in building accurate experimental models for RNA structures. This chapter describes the tools and techniques our research group and our collaborators have developed over the years to help RNA structural biologists both evaluate and achieve better accuracy. Expert analysis of large, high-resolution, quality-conscious RNA datasets provides the fundamental information that enables automated methods for robust and efficient error diagnosis in validating RNA structures at all resolutions. The even more crucial goal of correcting the diagnosed outliers has steadily developed toward highly effective, computationally based techniques. Automation enables solving complex issues in large RNA structures, but cannot circumvent the need for thoughtful examination of local details, and so we also provide some guidance for interpreting and acting on the results of current structure validation for RNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For optimal solutions in health care, decision makers inevitably must evaluate trade-offs, which call for multi-attribute valuation methods. Researchers have proposed using best-worst scaling (BWS) methods which seek to extract information from respondents by asking them to identify the best and worst items in each choice set. While a companion paper describes the different types of BWS, application and their advantages and downsides, this contribution expounds their relationships with microeconomic theory, which also have implications for statistical inference. This article devotes to the microeconomic foundations of preference measurement, also addressing issues such as scale invariance and scale heterogeneity. Furthermore the paper discusses the basics of preference measurement using rating, ranking and stated choice data in the light of the findings of the preceding section. Moreover the paper gives an introduction to the use of stated choice data and juxtaposes BWS with the microeconomic foundations.