2 resultados para standard package software

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Administrative or quality improvement registries may or may not contain the elements needed for investigations by trauma researchers. International Classification of Diseases Program for Injury Categorisation (ICDPIC), a statistical program available through Stata, is a powerful tool that can extract injury severity scores from ICD-9-CM codes. We conducted a validation study for use of the ICDPIC in trauma research. METHODS: We conducted a retrospective cohort validation study of 40,418 patients with injury using a large regional trauma registry. ICDPIC-generated AIS scores for each body region were compared with trauma registry AIS scores (gold standard) in adult and paediatric populations. A separate analysis was conducted among patients with traumatic brain injury (TBI) comparing the ICDPIC tool with ICD-9-CM embedded severity codes. Performance in characterising overall injury severity, by the ISS, was also assessed. RESULTS: The ICDPIC tool generated substantial correlations in thoracic and abdominal trauma (weighted κ 0.87-0.92), and in head and neck trauma (weighted κ 0.76-0.83). The ICDPIC tool captured TBI severity better than ICD-9-CM code embedded severity and offered the advantage of generating a severity value for every patient (rather than having missing data). Its ability to produce an accurate severity score was consistent within each body region as well as overall. CONCLUSIONS: The ICDPIC tool performs well in classifying injury severity and is superior to ICD-9-CM embedded severity for TBI. Use of ICDPIC demonstrates substantial efficiency and may be a preferred tool in determining injury severity for large trauma datasets, provided researchers understand its limitations and take caution when examining smaller trauma datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2016 Springer Science+Business Media New YorkResearchers studying mammalian dentitions from functional and adaptive perspectives increasingly have moved towards using dental topography measures that can be estimated from 3D surface scans, which do not require identification of specific homologous landmarks. Here we present molaR, a new R package designed to assist researchers in calculating four commonly used topographic measures: Dirichlet Normal Energy (DNE), Relief Index (RFI), Orientation Patch Count (OPC), and Orientation Patch Count Rotated (OPCR) from surface scans of teeth, enabling a unified application of these informative new metrics. In addition to providing topographic measuring tools, molaR has complimentary plotting functions enabling highly customizable visualization of results. This article gives a detailed description of the DNE measure, walks researchers through installing, operating, and troubleshooting molaR and its functions, and gives an example of a simple comparison that measured teeth of the primates Alouatta and Pithecia in molaR and other available software packages. molaR is a free and open source software extension, which can be found at the doi:10.13140/RG.2.1.3563.4961(molaR v. 2.0) as well as on the Internet repository CRAN, which stores R packages.