2 resultados para small hepatocellular carcinoma
em Duke University
Resumo:
The burden of chronic hepatitis C virus (HCV) infection is significant and growing. HCV is considered one of the leading causes of liver disease worldwide and the leading cause of liver transplantation globally. While those infected is estimated in the hundreds of millions, this is likely an underestimation because of the indolent nature of this disease when first contracted. Approximately 20% of patients with HCV infection will progress to advanced fibrosis and cirrhosis. Those that do are at risk of decompensated liver disease including GI bleeding, encephalopathy, severe lab abnormalities, and hepatocellular carcinoma. Those individuals with advanced fibrosis and cirrhosis have historically been difficult to treat. The backbone of previous HCV regimens was interferon (IFN). The outcomes for IFN based regimens were poor and resulted in increased adverse events among those with advanced fibrosis and cirrhosis. Now, in the era of new direct acting antiviral (DAA's) medications, there is hope for curing chronic HCV in everyone, including those with advanced fibrosis and cirrhosis. This article provides a review on the most up to date data on the use of DAA's in patients with advanced fibrosis and cirrhosis. We are at a point where HCV could be truly eradicated, but to do so will require ensuring there are effective and safe treatments for those with advanced fibrosis and cirrhosis.
Resumo:
mRNA localization is emerging as a critical cellular mechanism for the spatiotemporal regulation of protein expression and serves important roles in oogenesis, embryogenesis, cell fate specification, and synapse formation. Signal sequence-encoding mRNAs are localized to the endoplasmic reticulum (ER) membrane by either of two mechanisms, a canonical mechanism of translation on ER-bound ribosomes (signal recognition particle pathway), or a poorly understood direct ER anchoring mechanism. In this study, we identify that the ER integral membrane proteins function as RNA-binding proteins and play important roles in the direct mRNA anchoring to the ER. We report that one of the ER integral membrane RNA-binding protein, AEG-1 (astrocyte elevated gene-1), functions in the direct ER anchoring and translational regulation of mRNAs encoding endomembrane transmembrane proteins. HITS-CLIP and PAR-CLIP analyses of the AEG-1 mRNA interactome of human hepatocellular carcinoma cells revealed a high enrichment for mRNAs encoding endomembrane organelle proteins, most notably encoding transmembrane proteins. AEG-1 binding sites were highly enriched in the coding sequence and displayed a signature cluster enrichment downstream of encoded transmembrane domains. In overexpression and knockdown models, AEG-1 expression markedly regulates translational efficiency and protein functions of two of its bound transcripts, MDR1 and NPC1. This study reveals a molecular mechanism for the selective localization of mRNAs to the ER and identifies a novel post-transcriptional gene regulation function for AEG-1 in membrane protein expression.