2 resultados para single-case A-B-fase design

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few epidemiologic studies describe longitudinal liver chemistry (LC) elevations in cancer patients. A population-based retrospective cohort was identified from 31 Phase 2-3 oncology trials (excluding targeted therapies) conducted from 1985 to 2005 to evaluate background rates of LC elevations in patients (n = 3998) with or without liver metastases. Patients with baseline liver metastases (29% of patients) presented with a 3% prevalence of alanine transaminase (ALT) ≥ 3x upper limits normal (ULN) and 0.2% prevalence of bilirubin ≥ 3xULN. During follow-up, the incidence (per 1000 person-months) of new onset ALT elevations ≥3xULN was 6.1 (95% CI: 4.5, 8.0) and 2.2 (95% CI: 0.9, 4.5) in patients without and with liver metastases, respectively. No new incident cases of ALT and bilirubin elevations suggestive of severe liver injury occurred among those with liver metastases; a single case occurred among those without metastasis. Regardless of the presence of liver metastases, LC elevations were rare in cancer patients during oncology trials, which may be due to enrollment criteria. Our study validates uniform thresholds for detection of LC elevations in oncology studies and serves as an empirical referent point for comparing liver enzyme abnormalities in oncology trials of novel targeted therapies. These data support uniform LC stopping criteria in oncology trials.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Significant advances in understanding the fundamental photophysical behavior of single-walled carbon nanotubes (SWNTs) have been made possible by the development of ionic, conjugated aryleneethynylene polymers that helically wrap SWNTs with well-defined morphology. My contribution to this work was the design and synthesis of porphyrin-containing polymers and the photophysical investigation of the corresponding polymer-wrapped SWNTs. For these new constructs, the polymer acts as more than just a solubilization scaffold; such assemblies can provide benchmark data for evaluating spectroscopic signatures of energy and charge transfer events and lay the groundwork for further, rational development of polymers with precisely tuned redox properties and electronic coupling with the underlying SWNT. The first design to incorporate a zinc porphyrin into the polymer backbone, PNES-PZn, suffered from severe aggregation in solution and was redesigned to produce the porphyrin-containing polymer S-PBN-PZn. This polymer was utilized to helically wrap chirality-enriched (6,5) SWNTs, which resulted in significant quenching of the porphyrin-based fluorescence. Time-resolved spectroscopy revealed a simultaneous rise and decay of the porphyrin radical cation and SWNT electron polaron spectroscopic signatures indicative of photoinduced electron transfer. A new polymer, S-PBN(b)-Ph2PZn3, was then synthesized which incorporated a meso-ethyne linked zinc porphyrin trimer. By changing the absorption profile and electrochemical redox potentials of the polymer, the photophysical behavior of the corresponding polymer-wrapped (6,5)-SWNTs was dramatically changed, and the polymer-wrapped SWNTs no longer showed evidence for photoinduced electron transfer.