4 resultados para self-organized critical

em Duke University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nonlinear interaction between light and atoms is an extensive field of study with a broad range of applications in quantum information science and condensed matter physics. Nonlinear optical phenomena occurring in cold atoms are particularly interesting because such slowly moving atoms can spatially organize into density gratings, which allows for studies involving optical interactions with structured materials. In this thesis, I describe a novel nonlinear optical effect that arises when cold atoms spatially bunch in an optical lattice. I show that employing this spatial atomic bunching provides access to a unique physical regime with reduced thresholds for nonlinear optical processes and enhanced material properties. Using this method, I observe the nonlinear optical phenomenon of transverse optical pattern formation at record-low powers. These transverse optical patterns are generated by a wave- mixing process that is mediated by the cold atomic vapor. The optical patterns are highly multimode and induce rich non-equilibrium atomic dynamics. In particular, I find that there exists a synergistic interplay between the generated optical pat- terns and the atoms, wherein the scattered fields help the atoms to self-organize into new, multimode structures that are not externally imposed on the atomic sample. These self-organized structures in turn enhance the power in the optical patterns. I provide the first detailed investigation of the motional dynamics of atoms that have self-organized in a multimode geometry. I also show that the transverse optical patterns induce Sisyphus cooling in all three spatial dimensions, which is the first observation of spontaneous three-dimensional cooling. My experiment represents a unique means by which to study nonlinear optics and non-equilibrium dynamics at ultra-low required powers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

My dissertation presents a study of satire in contemporary German Fiction of Turkish migration. Engaging with a body of works hitherto neglected in scholarship, I examine how satirical texts, films, and plays intervene critically in discourses on post-unification German national identity. Drawing on the seminal work of scholars such as Leslie Adelson, Tom Cheesman, B. Venkat Mani, Petra Fachinger, and Deniz Göktürk, my dissertation expands the scholarship of Turkish German Studies by linking a discussion of satire as a critical rhetoric to the question of how we talk about what it means to be German.

Chapter one offers a novel framework of the satirical vis-à-vis standard conceptions of satire and deconstructionist theories of reading. I understand satire as a form of rhetoric that creates moments of ambiguity by bringing together intersectional categories like gender, ethnicity, race, religion, in order to challenge the audience’s practices of interpreting cultural otherness. Chapter two examines the use of ethnic self-deprecation as one such strategy in Osman Engin’s short stories and his first novel, Kanaken-Ghandi through the lens of Bakhtinian polyphony and Judith Butler’s work on hate speech. Engin, I argue, employs ethnic selfdeprecation as a narrative strategy to straddle the line between deconstructing and re-affirming cultural stereotypes. Investigating the role of ethnic impersonation in Hussi Kutlucan’s film Ich Chef, Du Turnshuh, the third chapter turns to the question of ethnicity as a visual signifier for the negotiation of cultural inclusion and exclusion in post-1990 film. In dialogue with Katrin Sieg’s work on ethnic drag and Amy Robinson’s theory of passing, I show how the film challenges ethnically-coded narratives of Germanness. In the final chapter on Nurkan Erpulat and Jens Hillje’s play Verrücktes Blut, I discuss how intertextuality and adaptation (Hutcheon, Genette) of different story and character worlds are used to create moments of ambiguity and overdeterminacy in the play, in order to challenge the audience’s perception of what an inclusive German society might look like.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus on how one is behaving, feeling, and thinking, provides a powerful source of self-knowledge. How is this self-knowledge utilized in the dynamic reconstruction of autobiographical memories? How, in turn, might autobiographical memories support identity and the self-system? I address these questions through a critical review of the literature on autobiographical memory and the self-system, with a special focus on the self-concept, self-knowledge, and identity. I then outline the methods and results of a prospective longitudinal study examining the effects of an identity change on memory for events related to that identity. Participant-rated memory characteristics, computer-generated ratings of narrative content and structure, and neutral-observer ratings of coherence were examined for changes over time related to an identity-change, as well as for their ability to predict an identity-change. The conclusions from this study are threefold: (1) when the rated centrality of an event decreases, the reported instances of retrieval, as well as the phenomenology associated with retrieval and the number of words used to describe the memory, also decrease; (2) memory accuracy (here, estimating past behaviors) was not influenced by an identity change; and (3) remembering is not unidirectional – characteristics of identity-relevant memories and the life story predict and may help support persistence with an identity (here, an academic trajectory).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue engineering of biomimetic skeletal muscle may lead to development of new therapies for myogenic repair and generation of improved in vitro models for studies of muscle function, regeneration, and disease. For the optimal therapeutic and in vitro results, engineered muscle should recreate the force-generating and regenerative capacities of native muscle, enabled respectively by its two main cellular constituents, the mature myofibers and satellite cells (SCs). Still, after 20 years of research, engineered muscle tissues fall short of mimicking contractile function and self-repair capacity of native skeletal muscle. To overcome this limitation, we set the thesis goals to: 1) generate a highly functional, self-regenerative engineered skeletal muscle and 2) explore mechanisms governing its formation and regeneration in vitro and survival and vascularization in vivo.

By studying myogenic progenitors isolated from neonatal rats, we first discovered advantages of using an adherent cell fraction for engineering of skeletal muscles with robust structure and function and the formation of a SC pool. Specifically, when synergized with dynamic culture conditions, the use of adherent cells yielded muscle constructs capable of replicating the contractile output of native neonatal muscle, generating >40 mN/mm2 of specific force. Moreover, tissue structure and cellular heterogeneity of engineered muscle constructs closely resembled those of native muscle, consisting of aligned, striated myofibers embedded in a matrix of basal lamina proteins and SCs that resided in native-like niches. Importantly, we identified rapid formation of myofibers early during engineered muscle culture as a critical condition leading to SC homing and conversion to a quiescent, non-proliferative state. The SCs retained natural regenerative capacity and activated, proliferated, and differentiated to rebuild damaged myofibers and recover contractile function within 10 days after the muscle was injured by cardiotoxin (CTX). The resulting regenerative response was directly dependent on the abundance of SCs in the engineered muscle that we varied by expanding starting cell population under different levels of basic fibroblast growth factor (bFGF), an inhibitor of myogenic differentiation. Using a dorsal skinfold window chamber model in nude mice, we further demonstrated that within 2 weeks after implantation, initially avascular engineered muscle underwent robust vascularization and perfusion and exhibited improved structure and contractile function beyond what was achievable in vitro.

To enhance translational value of our approach, we transitioned to use of adult rat myogenic cells, but found that despite similar function to that of neonatal constructs, adult-derived muscle lacked regenerative capacity. Using a novel platform for live monitoring of calcium transients during construct culture, we rapidly screened for potential enhancers of regeneration to establish that many known pro-regenerative soluble factors were ineffective in stimulating in vitro engineered muscle recovery from CTX injury. This led us to introduce bone marrow-derived macrophages (BMDMs), an established non-myogenic contributor to muscle repair, to the adult-derived constructs and to demonstrate remarkable recovery of force generation (>80%) and muscle mass (>70%) following CTX injury. Mechanistically, while similar patterns of early SC activation and proliferation upon injury were observed in engineered muscles with and without BMDMs, a significant decrease in injury-induced apoptosis occurred only in the presence of BMDMs. The importance of preventing apoptosis was further demonstrated by showing that application of caspase inhibitor (Q-VD-OPh) yielded myofiber regrowth and functional recovery post-injury. Gene expression analysis suggested muscle-secreted tumor necrosis factor-α (TNFα) as a potential inducer of apoptosis as common for muscle degeneration in diseases and aging in vivo. Finally, we showed that BMDM incorporation in engineered muscle enhanced its growth, angiogenesis, and function following implantation in the dorsal window chambers in nude mice.

In summary, this thesis describes novel strategies to engineer highly contractile and regenerative skeletal muscle tissues starting from neonatal or adult rat myogenic cells. We find that age-dependent differences of myogenic cells distinctly affect the self-repair capacity but not contractile function of engineered muscle. Adult, but not neonatal, myogenic progenitors appear to require co-culture with other cells, such as bone marrow-derived macrophages, to allow robust muscle regeneration in vitro and rapid vascularization in vivo. Regarding the established roles of immune system cells in the repair of various muscle and non-muscle tissues, we expect that our work will stimulate the future applications of immune cells as pro-regenerative or anti-inflammatory constituents of engineered tissue grafts. Furthermore, we expect that rodent studies in this thesis will inspire successful engineering of biomimetic human muscle tissues for use in regenerative therapy and drug discovery applications.