6 resultados para scatter
em Duke University
Resumo:
The goal of this study was to characterize the image quality of our dedicated, quasi-monochromatic spectrum, cone beam breast imaging system under scatter corrected and non-scatter corrected conditions for a variety of breast compositions. CT projections were acquired of a breast phantom containing two concentric sets of acrylic spheres that varied in size (1-8mm) based on their polar position. The breast phantom was filled with 3 different concentrations of methanol and water, simulating a range of breast densities (0.79-1.0g/cc); acrylic yarn was sometimes included to simulate connective tissue of a breast. For each phantom condition, 2D scatter was measured for all projection angles. Scatter-corrected and uncorrected projections were then reconstructed with an iterative ordered subsets convex algorithm. Reconstructed image quality was characterized using SNR and contrast analysis, and followed by a human observer detection task for the spheres in the different concentric rings. Results show that scatter correction effectively reduces the cupping artifact and improves image contrast and SNR. Results from the observer study indicate that there was no statistical difference in the number or sizes of lesions observed in the scatter versus non-scatter corrected images for all densities. Nonetheless, applying scatter correction for differing breast conditions improves overall image quality.
Resumo:
Scatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung.
The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future testing. Our imaging system has been able to define the location and composition of the various materials in the phantom. These phantoms were used to characterize the CACSSI system in terms of beam width and imaging technique. The result of this work showed accurate modeling and characterization of the phantoms through comparison of the tissue-equivalent form factors to those from literature. The physical construction of the phantoms, based on actual patient anatomy, was validated using mammography and computed tomography to visually compare the clinical images to those of actual patient anatomy.
Resumo:
This study intends to validate the sensitivity and specificity of coded aperture coherent scatter spectral imaging (CACSSI) by comparison to clinical histological preparation and pathologic analysis methods currently used for the differentiation of normal and neoplastic breast tissues. A composite overlay of the CACSSI rendered image and pathologist interpreted, stained sections validate the ability of coherent scatter imaging to differentiate cancerous tissues from normal, healthy breast structures ex-vivo. Via comparison to the pathologist annotated slides, the CACSSI system may be further optimized to maximized sensitivity and specificity for differentiation of breast carcinomas.
Resumo:
Our media is saturated with claims of ``facts'' made from data. Database research has in the past focused on how to answer queries, but has not devoted much attention to discerning more subtle qualities of the resulting claims, e.g., is a claim ``cherry-picking''? This paper proposes a Query Response Surface (QRS) based framework that models claims based on structured data as parameterized queries. A key insight is that we can learn a lot about a claim by perturbing its parameters and seeing how its conclusion changes. This framework lets us formulate and tackle practical fact-checking tasks --- reverse-engineering vague claims, and countering questionable claims --- as computational problems. Within the QRS based framework, we take one step further, and propose a problem along with efficient algorithms for finding high-quality claims of a given form from data, i.e. raising good questions, in the first place. This is achieved to using a limited number of high-valued claims to represent high-valued regions of the QRS. Besides the general purpose high-quality claim finding problem, lead-finding can be tailored towards specific claim quality measures, also defined within the QRS framework. An example of uniqueness-based lead-finding is presented for ``one-of-the-few'' claims, landing in interpretable high-quality claims, and an adjustable mechanism for ranking objects, e.g. NBA players, based on what claims can be made for them. Finally, we study the use of visualization as a powerful way of conveying results of a large number of claims. An efficient two stage sampling algorithm is proposed for generating input of 2d scatter plot with heatmap, evalutaing a limited amount of data, while preserving the two essential visual features, namely outliers and clusters. For all the problems, we present real-world examples and experiments that demonstrate the power of our model, efficiency of our algorithms, and usefulness of their results.
Resumo:
X-ray mammography has been the gold standard for breast imaging for decades, despite the significant limitations posed by the two dimensional (2D) image acquisitions. Difficulty in diagnosing lesions close to the chest wall and axilla, high amount of structural overlap and patient discomfort due to compression are only some of these limitations. To overcome these drawbacks, three dimensional (3D) breast imaging modalities have been developed including dual modality single photon emission computed tomography (SPECT) and computed tomography (CT) systems. This thesis focuses on the development and integration of the next generation of such a device for dedicated breast imaging. The goals of this dissertation work are to: [1] understand and characterize any effects of fully 3-D trajectories on reconstructed image scatter correction, absorbed dose and Hounsifeld Unit accuracy, and [2] design, develop and implement the fully flexible, third generation hybrid SPECT-CT system capable of traversing complex 3D orbits about a pendant breast volume, without interference from the other. Such a system would overcome artifacts resulting from incompletely sampled divergent cone beam imaging schemes and allow imaging closer to the chest wall, which other systems currently under research and development elsewhere cannot achieve.
The dependence of x-ray scatter radiation on object shape, size, material composition and the CT acquisition trajectory, was investigated with a well-established beam stop array (BSA) scatter correction method. While the 2D scatter to primary ratio (SPR) was the main metric used to characterize total system scatter, a new metric called ‘normalized scatter contribution’ was developed to compare the results of scatter correction on 3D reconstructed volumes. Scatter estimation studies were undertaken with a sinusoidal saddle (±15° polar tilt) orbit and a traditional circular (AZOR) orbit. Clinical studies to acquire data for scatter correction were used to evaluate the 2D SPR on a small set of patients scanned with the AZOR orbit. Clinical SPR results showed clear dependence of scatter on breast composition and glandular tissue distribution, otherwise consistent with the overall phantom-based size and density measurements. Additionally, SPR dependence was also observed on the acquisition trajectory where 2D scatter increased with an increase in the polar tilt angle of the system.
The dose delivered by any imaging system is of primary importance from the patient’s point of view, and therefore trajectory related differences in the dose distribution in a target volume were evaluated. Monte Carlo simulations as well as physical measurements using radiochromic film were undertaken using saddle and AZOR orbits. Results illustrated that both orbits deliver comparable dose to the target volume, and only slightly differ in distribution within the volume. Simulations and measurements showed similar results, and all measured dose values were within the standard screening mammography-specific, 6 mGy dose limit, which is used as a benchmark for dose comparisons.
Hounsfield Units (HU) are used clinically in differentiating tissue types in a reconstructed CT image, and therefore the HU accuracy of a system is very important, especially when using non-traditional trajectories. Uniform phantoms filled with various uniform density fluids were used to investigate differences in HU accuracy between saddle and AZOR orbits. Results illustrate the considerably better performance of the saddle orbit, especially close to the chest and nipple region of what would clinically be a pedant breast volume. The AZOR orbit causes shading artifacts near the nipple, due to insufficient sampling, rendering a major portion of the scanned phantom unusable, whereas the saddle orbit performs exceptionally well and provides a tighter distribution of HU values in reconstructed volumes.
Finally, the third generation, fully-suspended SPECT-CT system was designed in and developed in our lab. A novel mechanical method using a linear motor was developed for tilting the CT system. A new x-ray source and a custom made 40 x 30 cm2 detector were integrated on to this system. The SPECT system was nested, in the center of the gantry, orthogonal to the CT source-detector pair. The SPECT system tilts on a goniometer, and the newly developed CT tilting mechanism allows ±15° maximum polar tilting of the CT system. The entire gantry is mounted on a rotation stage, allowing complex arbitrary trajectories for each system, without interference from the other, while having a common field of view. This hybrid system shows potential to be used clinically as a diagnostic tool for dedicated breast imaging.
Resumo:
This work focuses on the construction and application of coded apertures to compressive X-ray tomography. Coded apertures can be made in a number of ways, each method having an impact on system background and signal contrast. Methods of constructing coded apertures for structuring X-ray illumination and scatter are compared and analyzed. Apertures can create structured X-ray bundles that investigate specific sets of object voxels. The tailored bundles of rays form a code (or pattern) and are later estimated through computational inversion. Structured illumination can be used to subsample object voxels and make inversion feasible for low dose computed tomography (CT) systems, or it can be used to reduce background in limited angle CT systems.
On the detection side, coded apertures modulate X-ray scatter signals to determine the position and radiance of scatter points. By forming object dependent projections in measurement space, coded apertures multiplex modulated scatter signals onto a detector. The multiplexed signals can be inverted with knowledge of the code pattern and system geometry. This work shows two systems capable of determining object position and type in a 2D plane, by illuminating objects with an X-ray `fan beam,' using coded apertures and compressive measurements. Scatter tomography can help identify materials in security and medicine that may be ambiguous with transmission tomography alone.