12 resultados para scale-free networks

em Duke University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Posttraumatic stress disorder (PTSD) affects the functional recruitment and connectivity between neural regions during autobiographical memory (AM) retrieval that overlap with default and control networks. Whether such univariate changes relate to potential differences in the contributions of the large-scale neural networks supporting cognition in PTSD is unknown. In the present functional MRI study, we employed independent-component analysis to examine the influence of the engagement of neural networks during the recall of personal memories in a PTSD group (15 participants) as compared to non-trauma-exposed healthy controls (14 participants). We found that the PTSD group recruited similar neural networks when compared to the controls during AM recall, including default-network subsystems and control networks, but group differences emerged in the spatial and temporal characteristics of these networks. First, we found spatial differences in the contributions of the anterior and posterior midline across the networks, and of the amygdala in particular, for the medial temporal subsystem of the default network. Second, we found temporal differences within the medial prefrontal subsystem of the default network, with less temporal coupling of this network during AM retrieval in PTSD relative to controls. These findings suggest that the spatial and temporal characteristics of the default and control networks potentially differ in a PTSD group versus healthy controls and contribute to altered recall of personal memory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

How do separate neural networks interact to support complex cognitive processes such as remembrance of the personal past? Autobiographical memory (AM) retrieval recruits a consistent pattern of activation that potentially comprises multiple neural networks. However, it is unclear how such large-scale neural networks interact and are modulated by properties of the memory retrieval process. In the present functional MRI (fMRI) study, we combined independent component analysis (ICA) and dynamic causal modeling (DCM) to understand the neural networks supporting AM retrieval. ICA revealed four task-related components consistent with the previous literature: 1) medial prefrontal cortex (PFC) network, associated with self-referential processes, 2) medial temporal lobe (MTL) network, associated with memory, 3) frontoparietal network, associated with strategic search, and 4) cingulooperculum network, associated with goal maintenance. DCM analysis revealed that the medial PFC network drove activation within the system, consistent with the importance of this network to AM retrieval. Additionally, memory accessibility and recollection uniquely altered connectivity between these neural networks. Recollection modulated the influence of the medial PFC on the MTL network during elaboration, suggesting that greater connectivity among subsystems of the default network supports greater re-experience. In contrast, memory accessibility modulated the influence of frontoparietal and MTL networks on the medial PFC network, suggesting that ease of retrieval involves greater fluency among the multiple networks contributing to AM. These results show the integration between neural networks supporting AM retrieval and the modulation of network connectivity by behavior.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Estimation of the skeleton of a directed acyclic graph (DAG) is of great importance for understanding the underlying DAG and causal effects can be assessed from the skeleton when the DAG is not identifiable. We propose a novel method named PenPC to estimate the skeleton of a high-dimensional DAG by a two-step approach. We first estimate the nonzero entries of a concentration matrix using penalized regression, and then fix the difference between the concentration matrix and the skeleton by evaluating a set of conditional independence hypotheses. For high-dimensional problems where the number of vertices p is in polynomial or exponential scale of sample size n, we study the asymptotic property of PenPC on two types of graphs: traditional random graphs where all the vertices have the same expected number of neighbors, and scale-free graphs where a few vertices may have a large number of neighbors. As illustrated by extensive simulations and applications on gene expression data of cancer patients, PenPC has higher sensitivity and specificity than the state-of-the-art method, the PC-stable algorithm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

While molecular and cellular processes are often modeled as stochastic processes, such as Brownian motion, chemical reaction networks and gene regulatory networks, there are few attempts to program a molecular-scale process to physically implement stochastic processes. DNA has been used as a substrate for programming molecular interactions, but its applications are restricted to deterministic functions and unfavorable properties such as slow processing, thermal annealing, aqueous solvents and difficult readout limit them to proof-of-concept purposes. To date, whether there exists a molecular process that can be programmed to implement stochastic processes for practical applications remains unknown.

In this dissertation, a fully specified Resonance Energy Transfer (RET) network between chromophores is accurately fabricated via DNA self-assembly, and the exciton dynamics in the RET network physically implement a stochastic process, specifically a continuous-time Markov chain (CTMC), which has a direct mapping to the physical geometry of the chromophore network. Excited by a light source, a RET network generates random samples in the temporal domain in the form of fluorescence photons which can be detected by a photon detector. The intrinsic sampling distribution of a RET network is derived as a phase-type distribution configured by its CTMC model. The conclusion is that the exciton dynamics in a RET network implement a general and important class of stochastic processes that can be directly and accurately programmed and used for practical applications of photonics and optoelectronics. Different approaches to using RET networks exist with vast potential applications. As an entropy source that can directly generate samples from virtually arbitrary distributions, RET networks can benefit applications that rely on generating random samples such as 1) fluorescent taggants and 2) stochastic computing.

By using RET networks between chromophores to implement fluorescent taggants with temporally coded signatures, the taggant design is not constrained by resolvable dyes and has a significantly larger coding capacity than spectrally or lifetime coded fluorescent taggants. Meanwhile, the taggant detection process becomes highly efficient, and the Maximum Likelihood Estimation (MLE) based taggant identification guarantees high accuracy even with only a few hundred detected photons.

Meanwhile, RET-based sampling units (RSU) can be constructed to accelerate probabilistic algorithms for wide applications in machine learning and data analytics. Because probabilistic algorithms often rely on iteratively sampling from parameterized distributions, they can be inefficient in practice on the deterministic hardware traditional computers use, especially for high-dimensional and complex problems. As an efficient universal sampling unit, the proposed RSU can be integrated into a processor / GPU as specialized functional units or organized as a discrete accelerator to bring substantial speedups and power savings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers incentives to provide goods that are non-excludable along social or geographic links. We find, first, that networks can lead to specialization in public good provision. In every social network there is an equilibrium where some individuals contribute and others free ride. In many networks, this extreme is the only outcome. Second, specialization can benefit society as a whole. This outcome arises when contributors are linked, collectively, to many agents. Finally, a new link increases access to public goods, but reduces individual incentives to contribute. Hence, overall welfare can be higher when there are holes in a network. © 2006 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report here the nonlinear rheological properties of metallo-supramolecular networks formed by the reversible cross-linking of semi-dilute unentangled solutions of poly(4-vinylpyridine) (PVP) in dimethyl sulfoxide (DMSO). The reversible cross-linkers are bis-Pd(II) or bis-Pt(II) complexes that coordinate to the pyridine functional groups on the PVP. Under steady shear, shear thickening is observed above a critical shear rate, and that critical shear rate is experimentally correlated with the lifetime of the metal-ligand bond. The onset and magnitude of the shear thickening depend on the amount of cross-linkers added. In contrast to the behavior observed in most transient networks, the time scale of network relaxation is found to increase during shear thickening. The primary mechanism of shear thickening is ascribed to the shear-induced transformation of intrachain cross-linking to interchain cross-linking, rather than nonlinear high tension along polymer chains that are stretched beyond the Gaussian range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main conclusion of this dissertation is that global H2 production within young ocean crust (<10 Mya) is higher than currently recognized, in part because current estimates of H2 production accompanying the serpentinization of peridotite may be too low (Chapter 2) and in part because a number of abiogenic H2-producing processes have heretofore gone unquantified (Chapter 3). The importance of free H2 to a range of geochemical processes makes the quantitative understanding of H2 production advanced in this dissertation pertinent to an array of open research questions across the geosciences (e.g. the origin and evolution of life and the oxidation of the Earth’s atmosphere and oceans).

The first component of this dissertation (Chapter 2) examines H2 produced within young ocean crust [e.g. near the mid-ocean ridge (MOR)] by serpentinization. In the presence of water, olivine-rich rocks (peridotites) undergo serpentinization (hydration) at temperatures of up to ~500°C but only produce H2 at temperatures up to ~350°C. A simple analytical model is presented that mechanistically ties the process to seafloor spreading and explicitly accounts for the importance of temperature in H2 formation. The model suggests that H2 production increases with the rate of seafloor spreading and the net thickness of serpentinized peridotite (S-P) in a column of lithosphere. The model is applied globally to the MOR using conservative estimates for the net thickness of lithospheric S-P, our least certain model input. Despite the large uncertainties surrounding the amount of serpentinized peridotite within oceanic crust, conservative model parameters suggest a magnitude of H2 production (~1012 moles H2/y) that is larger than the most widely cited previous estimates (~1011 although previous estimates range from 1010-1012 moles H2/y). Certain model relationships are also consistent with what has been established through field studies, for example that the highest H2 fluxes (moles H2/km2 seafloor) are produced near slower-spreading ridges (<20 mm/y). Other modeled relationships are new and represent testable predictions. Principal among these is that about half of the H2 produced globally is produced off-axis beneath faster-spreading seafloor (>20 mm/y), a region where only one measurement of H2 has been made thus far and is ripe for future investigation.

In the second part of this dissertation (Chapter 3), I construct the first budget for free H2 in young ocean crust that quantifies and compares all currently recognized H2 sources and H2 sinks. First global estimates of budget components are proposed in instances where previous estimate(s) could not be located provided that the literature on that specific budget component was not too sparse to do so. Results suggest that the nine known H2 sources, listed in order of quantitative importance, are: Crystallization (6x1012 moles H2/y or 61% of total H2 production), serpentinization (2x1012 moles H2/y or 21%), magmatic degassing (7x1011 moles H2/y or 7%), lava-seawater interaction (5x1011 moles H2/y or 5%), low-temperature alteration of basalt (5x1011 moles H2/y or 5%), high-temperature alteration of basalt (3x1010 moles H2/y or <1%), catalysis (3x108 moles H2/y or <<1%), radiolysis (2x108 moles H2/y or <<1%), and pyrite formation (3x106 moles H2/y or <<1%). Next we consider two well-known H2 sinks, H2 lost to the ocean and H2 occluded within rock minerals, and our analysis suggests that both are of similar size (both are 6x1011 moles H2/y). Budgeting results suggest a large difference between H2 sources (total production = 1x1013 moles H2/y) and H2 sinks (total losses = 1x1011 moles H2/y). Assuming this large difference represents H2 consumed by microbes (total consumption = 9x1011 moles H2/y), we explore rates of primary production by the chemosynthetic, sub-seafloor biosphere. Although the numbers presented require further examination and future modifications, the analysis suggests that the sub-seafloor H2 budget is similar to the sub-seafloor CH4 budget in the sense that globally significant quantities of both of these reduced gases are produced beneath the seafloor but never escape the seafloor due to microbial consumption.

The third and final component of this dissertation (Chapter 4) explores the self-organization of barchan sand dune fields. In nature, barchan dunes typically exist as members of larger dune fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work, and from field observations: Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; when dunes become sufficiently large, small dunes are born on their downwind sides (“calving”); and when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The apparel industry is one of the oldest and largest export industries in the world, with global trade and production networks that connect firms and workers in countries at all levels of economic development. This chapter examines the impact of the North American Free Trade Agreement (NAFTA) as one of the most recent and significant developments to affect patterns of international trade and production in the apparel and textile industries. Tr ade policies are changing the institutional environment in which firms in this industry operate, and companies are responding to these changes with new strategies designed to increase their profitability and strengthen their control over the apparel commodity chain. Our hypothesis is that lead firms are establishing qualitatively different kinds of regional production networks in North America from those that existed prior to NAFTA, and that these networks have important consequences for industrial upgrading in the Mexican textile and apparel industries. Post-NAFTA crossborder production arrangements include full-package networks that link lead firms in the United States with apparel and textile manufacturers, contractors, and suppliers in Mexico. Full-package production is increasing the local value added provided by the apparel commodity chain in Mexico and creating new opportunities for Mexican firms and workers. The chapter is divided into four main sections. The first section uses trade and production data to analyze shifts in global apparel flows, highlighting the emergence and consolidation of a regional trade bloc in North America. The second section discusses the process of industrial upgrading in the apparel industry and introduces a distinction between assembly and full-package production networks. The third section includes case studies based on published industry sources and strategic interviews with several lead companies whose strategies are largely responsible for the shifting trade patterns and NAFTA-inspired cross-border production networks discussed in the previous section. The fourth section considers the implications of these changes for employment in the North American apparel industry. © 2009 by Temple University Press. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermodynamic stability measurements on proteins and protein-ligand complexes can offer insights not only into the fundamental properties of protein folding reactions and protein functions, but also into the development of protein-directed therapeutic agents to combat disease. Conventional calorimetric or spectroscopic approaches for measuring protein stability typically require large amounts of purified protein. This requirement has precluded their use in proteomic applications. Stability of Proteins from Rates of Oxidation (SPROX) is a recently developed mass spectrometry-based approach for proteome-wide thermodynamic stability analysis. Since the proteomic coverage of SPROX is fundamentally limited by the detection of methionine-containing peptides, the use of tryptophan-containing peptides was investigated in this dissertation. A new SPROX-like protocol was developed that measured protein folding free energies using the denaturant dependence of the rate at which globally protected tryptophan and methionine residues are modified with dimethyl (2-hydroxyl-5-nitrobenzyl) sulfonium bromide and hydrogen peroxide, respectively. This so-called Hybrid protocol was applied to proteins in yeast and MCF-7 cell lysates and achieved a ~50% increase in proteomic coverage compared to probing only methionine-containing peptides. Subsequently, the Hybrid protocol was successfully utilized to identify and quantify both known and novel protein-ligand interactions in cell lysates. The ligands under study included the well-known Hsp90 inhibitor geldanamycin and the less well-understood omeprazole sulfide that inhibits liver-stage malaria. In addition to protein-small molecule interactions, protein-protein interactions involving Puf6 were investigated using the SPROX technique in comparative thermodynamic analyses performed on wild-type and Puf6-deletion yeast strains. A total of 39 proteins were detected as Puf6 targets and 36 of these targets were previously unknown to interact with Puf6. Finally, to facilitate the SPROX/Hybrid data analysis process and minimize human errors, a Bayesian algorithm was developed for transition midpoint assignment. In summary, the work in this dissertation expanded the scope of SPROX and evaluated the use of SPROX/Hybrid protocols for characterizing protein-ligand interactions in complex biological mixtures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The computational modeling of ocean waves and ocean-faring devices poses numerous challenges. Among these are the need to stably and accurately represent both the fluid-fluid interface between water and air as well as the fluid-structure interfaces arising between solid devices and one or more fluids. As techniques are developed to stably and accurately balance the interactions between fluid and structural solvers at these boundaries, a similarly pressing challenge is the development of algorithms that are massively scalable and capable of performing large-scale three-dimensional simulations on reasonable time scales. This dissertation introduces two separate methods for approaching this problem, with the first focusing on the development of sophisticated fluid-fluid interface representations and the second focusing primarily on scalability and extensibility to higher-order methods.

We begin by introducing the narrow-band gradient-augmented level set method (GALSM) for incompressible multiphase Navier-Stokes flow. This is the first use of the high-order GALSM for a fluid flow application, and its reliability and accuracy in modeling ocean environments is tested extensively. The method demonstrates numerous advantages over the traditional level set method, among these a heightened conservation of fluid volume and the representation of subgrid structures.

Next, we present a finite-volume algorithm for solving the incompressible Euler equations in two and three dimensions in the presence of a flow-driven free surface and a dynamic rigid body. In this development, the chief concerns are efficiency, scalability, and extensibility (to higher-order and truly conservative methods). These priorities informed a number of important choices: The air phase is substituted by a pressure boundary condition in order to greatly reduce the size of the computational domain, a cut-cell finite-volume approach is chosen in order to minimize fluid volume loss and open the door to higher-order methods, and adaptive mesh refinement (AMR) is employed to focus computational effort and make large-scale 3D simulations possible. This algorithm is shown to produce robust and accurate results that are well-suited for the study of ocean waves and the development of wave energy conversion (WEC) devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study networks of nonlocally coupled electronic oscillators that can be described approximately by a Kuramoto-like model. The experimental networks show long complex transients from random initial conditions on the route to network synchronization. The transients display complex behaviors, including resurgence of chimera states, which are network dynamics where order and disorder coexists. The spatial domain of the chimera state moves around the network and alternates with desynchronized dynamics. The fast time scale of our oscillators (on the order of 100ns) allows us to study the scaling of the transient time of large networks of more than a hundred nodes, which has not yet been confirmed previously in an experiment and could potentially be important in many natural networks. We find that the average transient time increases exponentially with the network size and can be modeled as a Poisson process in experiment and simulation. This exponential scaling is a result of a synchronization rate that follows a power law of the phase-space volume.