6 resultados para return on investments
em Duke University
Resumo:
At least since the seminal works of Jacob Mincer, labor economists have sought to understand how students make higher education investment decisions. Mincer’s original work seeks to understand how students decide how much education to accrue; subsequent work by various authors seeks to understand how students choose where to attend college, what field to major in, and whether to drop out of college.
Broadly speaking, this rich sub-field of literature contributes to society in two ways: First, it provides a better understanding of important social behaviors. Second, it helps policymakers anticipate the responses of students when evaluating various policy reforms.
While research on the higher education investment decisions of students has had an enormous impact on our understanding of society and has shaped countless education policies, students are only one interested party in the higher education landscape. In the jargon of economists, students represent only the `demand side’ of higher education---customers who are choosing options from a set of available alternatives. Opposite students are instructors and administrators who represent the `supply side’ of higher education---those who decide which options are available to students.
For similar reasons, it is also important to understand how individuals on the supply side of education make decisions: First, this provides a deeper understanding of the behaviors of important social institutions. Second, it helps policymakers anticipate the responses of instructors and administrators when evaluating various reforms. However, while there is substantial literature understanding decisions made on the demand side of education, there is far less attention paid to decisions on the supply side of education.
This dissertation uses empirical evidence to better understand how instructors and administrators make decisions and the implications of these decisions for students.
In the first chapter, I use data from Duke University and a Bayesian model of correlated learning to measure the signal quality of grades across academic fields. The correlated feature of the model allows grades in one academic field to signal ability in all other fields allowing me to measure both ‘own category' signal quality and ‘spillover' signal quality. Estimates reveal a clear division between information rich Science, Engineering, and Economics grades and less informative Humanities and Social Science grades. In many specifications, information spillovers are so powerful that precise Science, Engineering, and Economics grades are more informative about Humanities and Social Science abilities than Humanities and Social Science grades. This suggests students who take engineering courses during their Freshman year make more informed specialization decisions later in college.
In the second chapter, I use data from the University of Central Arkansas to understand how universities decide which courses to offer and how much to spend on instructors for these courses. Course offerings and instructor characteristics directly affect the courses students choose and the value they receive from these choices. This chapter reveals the university preferences over these student outcomes which best explain observed course offerings and instructors. This allows me to assess whether university incentives are aligned with students, to determine what alternative university choices would be preferred by students, and to illustrate how a revenue neutral tax/subsidy policy can induce a university to make these student-best decisions.
In the third chapter, co-authored with Thomas Ahn, Peter Arcidiacono, and Amy Hopson, we use data from the University of Kentucky to understand how instructors choose grading policies. In this chapter, we estimate an equilibrium model in which instructors choose grading policies and students choose courses and study effort given grading policies. In this model, instructors set both a grading intercept and a return on ability and effort. This builds a rich link between the grading policy decisions of instructors and the course choices of students. We use estimates of this model to infer what preference parameters best explain why instructors chose estimated grading policies. To illustrate the importance of these supply side decisions, we show changing grading policies can substantially reduce the gender gap in STEM enrollment.
Resumo:
This study assesses the value of restoring forested wetlands via the U.S. government's Wetlands Reserve Program (WRP) in the Mississippi Alluvial Valley by quantifying and monetizing ecosystem services. The three focal services are greenhouse gas (GHG) mitigation, nitrogen mitigation, and waterfowl recreation. Site- and region-level measurements of these ecosystem services are combined with process models to quantify their production on agricultural land, which serves as the baseline, and on restored wetlands. We adjust and transform these measures into per-hectare, valuation-ready units and monetize them with prices from emerging ecosystem markets and the environmental economics literature. By valuing three of the many ecosystem services produced, we generate lower bound estimates for the total ecosystem value of the wetlands restoration. Social welfare value is found to be between $1435 and $1486/ha/year, with GHG mitigation valued in the range of $171 to $222, nitrogen mitigation at $1248, and waterfowl recreation at $16. Limited to existing markets, the estimate for annual market value is merely $70/ha, but when fully accounting for potential markets, this estimate rises to $1035/ha. The estimated social value surpasses the public expenditure or social cost of wetlands restoration in only 1 year, indicating that the return on public investment is very attractive for the WRP. Moreover, the potential market value is substantially greater than landowner opportunity costs, showing that payments to private landowners to restore wetlands could also be profitable for individual landowners. © 2009 Elsevier B.V.
Resumo:
The increase in antibiotic resistance and the dearth of novel antibiotics have become a growing concern among policy-makers. A combination of financial, scientific, and regulatory challenges poses barriers to antibiotic innovation. However, each of these three challenges provides an opportunity to develop pathways for new business models to bring novel antibiotics to market. Pull-incentives that pay for the outputs of research and development (R&D) and push-incentives that pay for the inputs of R&D can be used to increase innovation for antibiotics. Financial incentives might be structured to promote delinkage of a company's return on investment from revenues of antibiotics. This delinkage strategy might not only increase innovation, but also reinforce rational use of antibiotics. Regulatory approval, however, should not and need not compromise safety and efficacy standards to bring antibiotics with novel mechanisms of action to market. Instead regulatory agencies could encourage development of companion diagnostics, test antibiotic combinations in parallel, and pool and make transparent clinical trial data to lower R&D costs. A tax on non-human use of antibiotics might also create a disincentive for non-therapeutic use of these drugs. Finally, the new business model for antibiotic innovation should apply the 3Rs strategy for encouraging collaborative approaches to R&D in innovating novel antibiotics: sharing resources, risks, and rewards.
Resumo:
BACKGROUND/AIMS: as genetic and genomic research proliferates, debate has ensued about returning results to participants. In addition to consideration of the benefits and harms to participants, researchers must also consider the logistical and financial feasibility of returning research results. However, little data exist of actual researcher practices. METHODS: we conducted an online survey of 446 corresponding authors of genetic/genomic studies conducted in the United States and published in 2006-2007 to assess the frequency with which they considered, offered to, or actually returned research results, what factors influenced these decisions, and the method of communicating results. RESULTS: the response rate was 24% (105/446). Fifty-four percent of respondents considered the issue of returning research results to participants, 28% offered to return individual research results, and 24% actually returned individual research results. Of those who considered the issue of returning research results during the study planning phase, the most common factors considered were whether research results were deemed clinically useful (18%) and respect for participants (13%). Researchers who had a medical degree and conducted studies on children were significantly more likely to offer to return or actually return individual results compared to those with a Ph.D. only. CONCLUSIONS: we speculate that issues associated with clinical validity and respect for participants dominated concerns of time and expense given the prominent and continuing ethical debates surrounding genetics and genomics research. The substantial number of researchers who did not consider returning research results suggests that researchers and institutional review boards need to devote more attention to a topic about which research participants are interested.
Resumo:
CONTEXT: In 1997, Congress authorized the US Food and Drug Administration (FDA) to grant 6-month extensions of marketing rights through the Pediatric Exclusivity Program if industry sponsors complete FDA-requested pediatric trials. The program has been praised for creating incentives for studies in children and has been criticized as a "windfall" to the innovator drug industry. This critique has been a substantial part of congressional debate on the program, which is due to expire in 2007. OBJECTIVE: To quantify the economic return to industry for completing pediatric exclusivity trials. DESIGN AND SETTING: A cohort study of programs conducted for pediatric exclusivity. Nine drugs that were granted pediatric exclusivity were selected. From the final study reports submitted to the FDA (2002-2004), key elements of the clinical trial design and study operations were obtained, and the cost of performing each study was estimated and converted into estimates of after-tax cash outflows. Three-year market sales were obtained and converted into estimates of after-tax cash inflows based on 6 months of additional market protection. Net economic return (cash inflows minus outflows) and net return-to-costs ratio (net economic return divided by cash outflows) for each product were then calculated. MAIN OUTCOME MEASURES: Net economic return and net return-to-cost ratio. RESULTS: The indications studied reflect a broad representation of the program: asthma, tumors, attention-deficit/hyperactivity disorder, hypertension, depression/generalized anxiety disorder, diabetes mellitus, gastroesophageal reflux, bacterial infection, and bone mineralization. The distribution of net economic return for 6 months of exclusivity varied substantially among products (net economic return ranged from -$8.9 million to $507.9 million and net return-to-cost ratio ranged from -0.68 to 73.63). CONCLUSIONS: The economic return for pediatric exclusivity is variable. As an incentive to complete much-needed clinical trials in children, pediatric exclusivity can generate lucrative returns or produce more modest returns on investment.
Resumo:
BACKGROUND: In recent years large bibliographic databases have made much of the published literature of biology available for searches. However, the capabilities of the search engines integrated into these databases for text-based bibliographic searches are limited. To enable searches that deliver the results expected by comparative anatomists, an underlying logical structure known as an ontology is required. DEVELOPMENT AND TESTING OF THE ONTOLOGY: Here we present the Mammalian Feeding Muscle Ontology (MFMO), a multi-species ontology focused on anatomical structures that participate in feeding and other oral/pharyngeal behaviors. A unique feature of the MFMO is that a simple, computable, definition of each muscle, which includes its attachments and innervation, is true across mammals. This construction mirrors the logical foundation of comparative anatomy and permits searches using language familiar to biologists. Further, it provides a template for muscles that will be useful in extending any anatomy ontology. The MFMO is developed to support the Feeding Experiments End-User Database Project (FEED, https://feedexp.org/), a publicly-available, online repository for physiological data collected from in vivo studies of feeding (e.g., mastication, biting, swallowing) in mammals. Currently the MFMO is integrated into FEED and also into two literature-specific implementations of Textpresso, a text-mining system that facilitates powerful searches of a corpus of scientific publications. We evaluate the MFMO by asking questions that test the ability of the ontology to return appropriate answers (competency questions). We compare the results of queries of the MFMO to results from similar searches in PubMed and Google Scholar. RESULTS AND SIGNIFICANCE: Our tests demonstrate that the MFMO is competent to answer queries formed in the common language of comparative anatomy, but PubMed and Google Scholar are not. Overall, our results show that by incorporating anatomical ontologies into searches, an expanded and anatomically comprehensive set of results can be obtained. The broader scientific and publishing communities should consider taking up the challenge of semantically enabled search capabilities.