4 resultados para resting interval

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sound is a key sensory modality for Hawaiian spinner dolphins. Like many other marine animals, these dolphins rely on sound and their acoustic environment for many aspects of their daily lives, making it is essential to understand soundscape in areas that are critical to their survival. Hawaiian spinner dolphins rest during the day in shallow coastal areas and forage offshore at night. In my dissertation I focus on the soundscape of the bays where Hawaiian spinner dolphins rest taking a soundscape ecology approach. I primarily relied on passive acoustic monitoring using four DSG-Ocean acoustic loggers in four Hawaiian spinner dolphin resting bays on the Kona Coast of Hawai‛i Island. 30-second recordings were made every four minutes in each of the bays for 20 to 27 months between January 8, 2011 and March 30, 2013. I also utilized concomitant vessel-based visual surveys in the four bays to provide context for these recordings. In my first chapter I used the contributions of the dolphins to the soundscape to monitor presence in the bays and found the degree of presence varied greatly from less than 40% to nearly 90% of days monitored with dolphins present. Having established these bays as important to the animals, in my second chapter I explored the many components of their resting bay soundscape and evaluated the influence of natural and human events on the soundscape. I characterized the overall soundscape in each of the four bays, used the tsunami event of March 2011 to approximate a natural soundscape and identified all loud daytime outliers. Overall, sound levels were consistently louder at night and quieter during the daytime due to the sounds from snapping shrimp. In fact, peak Hawaiian spinner dolphin resting time co-occurs with the quietest part of the day. However, I also found that humans drastically alter this daytime soundscape with sound from offshore aquaculture, vessel sound and military mid-frequency active sonar. During one recorded mid-frequency active sonar event in August 2011, sound pressure levels in the 3.15 kHz 1/3rd-octave band were as high as 45.8 dB above median ambient noise levels. Human activity both inside (vessels) and outside (sonar and aquaculture) the bays significantly altered the resting bay soundscape. Inside the bays there are high levels of human activity including vessel-based tourism directly targeting the dolphins. The interactions between humans and dolphins in their resting bays are of concern; therefore, my third chapter aimed to assess the acoustic response of the dolphins to human activity. Using days where acoustic recordings overlapped with visual surveys I found the greatest response in a bay with dolphin-centric activities, not in the bay with the most vessel activity, indicating that it is not the magnitude that elicits a response but the focus of the activity. In my fourth chapter I summarize the key results from my first three chapters to illustrate the power of multiple site design to prioritize action to protect Hawaiian spinner dolphins in their resting bays, a chapter I hope will be useful for managers should they take further action to protect the dolphins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans and animals have remarkable capabilities in keeping time and using time as a guide to orient their learning and decision making. Psychophysical models of timing and time perception have been proposed for decades and have received behavioral, anatomical and pharmacological data support. However, despite numerous studies that aimed at delineating the neural underpinnings of interval timing, a complete picture of the neurobiological network of timing in the seconds-to-minutes range remains elusive. Based on classical interval timing protocols and proposing a Timing, Immersive Memory and Emotional Regulation (TIMER) test battery, the author investigates the contributions of the dorsal and ventral hippocampus as well as the dorsolateral and the dorsomedial striatum to interval timing by comparing timing performances in mice after they received cytotoxic lesions in the corresponding brain regions. On the other hand, a timing-based theoretical framework for the emergence of conscious experience that is closely related to the function of the claustrum is proposed so as to serve both biological guidance and the research and evolution of “strong” artificial intelligence. Finally, a new “Double Saturation Model of Interval Timing” that integrates the direct- and indirect- pathways of striatum is proposed to explain the set of empirical findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research into resting-state functional magnetic resonance imaging (fMRI) has shown that the brain is very active during rest. This thesis work utilizes blood oxygenation level dependent (BOLD) signals to investigate the spatial and temporal functional network information found within resting-state data, and aims to investigate the feasibility of extracting functional connectivity networks using different methods as well as the dynamic variability within some of the methods. Furthermore, this work looks into producing valid networks using a sparsely-sampled sub-set of the original data.

In this work we utilize four main methods: independent component analysis (ICA), principal component analysis (PCA), correlation, and a point-processing technique. Each method comes with unique assumptions, as well as strengths and limitations into exploring how the resting state components interact in space and time.

Correlation is perhaps the simplest technique. Using this technique, resting-state patterns can be identified based on how similar the time profile is to a seed region’s time profile. However, this method requires a seed region and can only identify one resting state network at a time. This simple correlation technique is able to reproduce the resting state network using subject data from one subject’s scan session as well as with 16 subjects.

Independent component analysis, the second technique, has established software programs that can be used to implement this technique. ICA can extract multiple components from a data set in a single analysis. The disadvantage is that the resting state networks it produces are all independent of each other, making the assumption that the spatial pattern of functional connectivity is the same across all the time points. ICA is successfully able to reproduce resting state connectivity patterns for both one subject and a 16 subject concatenated data set.

Using principal component analysis, the dimensionality of the data is compressed to find the directions in which the variance of the data is most significant. This method utilizes the same basic matrix math as ICA with a few important differences that will be outlined later in this text. Using this method, sometimes different functional connectivity patterns are identifiable but with a large amount of noise and variability.

To begin to investigate the dynamics of the functional connectivity, the correlation technique is used to compare the first and second halves of a scan session. Minor differences are discernable between the correlation results of the scan session halves. Further, a sliding window technique is implemented to study the correlation coefficients through different sizes of correlation windows throughout time. From this technique it is apparent that the correlation level with the seed region is not static throughout the scan length.

The last method introduced, a point processing method, is one of the more novel techniques because it does not require analysis of the continuous time points. Here, network information is extracted based on brief occurrences of high or low amplitude signals within a seed region. Because point processing utilizes less time points from the data, the statistical power of the results is lower. There are also larger variations in DMN patterns between subjects. In addition to boosted computational efficiency, the benefit of using a point-process method is that the patterns produced for different seed regions do not have to be independent of one another.

This work compares four unique methods of identifying functional connectivity patterns. ICA is a technique that is currently used by many scientists studying functional connectivity patterns. The PCA technique is not optimal for the level of noise and the distribution of the data sets. The correlation technique is simple and obtains good results, however a seed region is needed and the method assumes that the DMN regions is correlated throughout the entire scan. Looking at the more dynamic aspects of correlation changing patterns of correlation were evident. The last point-processing method produces a promising results of identifying functional connectivity networks using only low and high amplitude BOLD signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Limited information exists on the effects of temporary functional deafferentation (TFD) on brain activity after peripheral nerve block (PNB) in healthy humans. Increasingly, resting-state functional connectivity (RSFC) is being used to study brain activity and organization. The purpose of this study was to test the hypothesis that TFD through PNB will influence changes in RSFC plasticity in central sensorimotor functional brain networks in healthy human participants. METHODS: The authors achieved TFD using a supraclavicular PNB model with 10 healthy human participants undergoing functional connectivity magnetic resonance imaging before PNB, during active PNB, and during PNB recovery. RSFC differences among study conditions were determined by multiple-comparison-corrected (false discovery rate-corrected P value less than 0.05) random-effects, between-condition, and seed-to-voxel analyses using the left and right manual motor regions. RESULTS: The results of this pilot study demonstrated disruption of interhemispheric left-to-right manual motor region RSFC (e.g., mean Fisher-transformed z [effect size] at pre-PNB 1.05 vs. 0.55 during PNB) but preservation of intrahemispheric RSFC of these regions during PNB. Additionally, there was increased RSFC between the left motor region of interest (PNB-affected area) and bilateral higher order visual cortex regions after clinical PNB resolution (e.g., Fisher z between left motor region of interest and right and left lingual gyrus regions during PNB, -0.1 and -0.6 vs. 0.22 and 0.18 after PNB resolution, respectively). CONCLUSIONS: This pilot study provides evidence that PNB has features consistent with other models of deafferentation, making it a potentially useful approach to investigate brain plasticity. The findings provide insight into RSFC of sensorimotor functional brain networks during PNB and PNB recovery and support modulation of the sensory-motor integration feedback loop as a mechanism for explaining the behavioral correlates of peripherally induced TFD through PNB.