5 resultados para representación de roles
em Duke University
Resumo:
The small airways of the human lung undergo pathological changes in pulmonary disorders, such as chronic obstructive pulmonary disease (COPD), asthma, bronchiolitis obliterans and cystic fibrosis. These clinical problems impose huge personal and societal healthcare burdens. The changes, termed 'pathological airway remodeling', affect the epithelium, the underlying mesenchyme and the reciprocal trophic interactions that occur between these tissues. Most of the normal human airway is lined by a pseudostratified epithelium of ciliated cells, secretory cells and 6-30% basal cells, the proportion of which varies along the proximal-distal axis. Epithelial abnormalities range from hypoplasia (failure to differentiate) to basal- and goblet-cell hyperplasia, squamous- and goblet-cell metaplasia, dysplasia and malignant transformation. Mesenchymal alterations include thickening of the basal lamina, smooth muscle hyperplasia, fibrosis and inflammatory cell accumulation. Paradoxically, given the prevalence and importance of airway remodeling in lung disease, its etiology is poorly understood. This is due, in part, to a lack of basic knowledge of the mechanisms that regulate the differentiation, maintenance and repair of the airway epithelium. Specifically, little is known about the proliferation and differentiation of basal cells, a multipotent stem cell population of the pseudostratified airway epithelium. This Perspective summarizes what we know, and what we need to know, about airway basal cells to evaluate their contributions to normal and abnormal airway remodeling. We contend that exploiting well-described model systems using both human airway epithelial cells and the pseudostratified epithelium of the genetically tractable mouse trachea will enable crucial discoveries regarding the pathogenesis of airway disease.
Resumo:
BACKGROUND: Scythe/BAT3 is a member of the BAG protein family whose role in apoptosis has been extensively studied. However, since the developmental defects observed in Bat3-null mouse embryos cannot be explained solely by defects in apoptosis, we investigated whether BAT3 is also involved in cell-cycle progression. METHODS/PRINCIPAL FINDINGS: Using a stable-inducible Bat3-knockdown cellular system, we demonstrated that reduced BAT3 protein level causes a delay in both G1/S transition and G2/M progression. Concurrent with these changes in cell-cycle progression, we observed a reduction in the turnover and phosphorylation of the CDK inhibitor p21, which is best known as an inhibitor of DNA replication; however, phosphorylated p21 has also been shown to promote G2/M progression. Our findings indicate that in Bat3-knockdown cells, p21 continues to be synthesized during cell-cycle phases that do not normally require p21, resulting in p21 protein accumulation and a subsequent delay in cell-cycle progression. Finally, we showed that BAT3 co-localizes with p21 during the cell cycle and is required for the translocation of p21 from the cytoplasm to the nucleus during the G1/S transition and G2/M progression. CONCLUSION: Our study reveals a novel, non-apoptotic role for BAT3 in cell-cycle regulation. By maintaining a low p21 protein level during the G1/S transition, BAT3 counteracts the inhibitory effect of p21 on DNA replication and thus enables the cells to progress from G1 to S phase. Conversely, during G2/M progression, BAT3 facilitates p21 phosphorylation by cyclin A/Cdk2, an event required for G2/M progression. BAT3 modulates these pro- and anti-proliferative roles of p21 at least in part by regulating cyclin A abundance, as well as p21 translocation between the cytoplasm and the nucleus to ensure that it functions in the appropriate intracellular compartment during each phase of the cell cycle.
Resumo:
The distribution and movement of water can influence the state and dynamics of terrestrial and aquatic ecosystems through a diversity of mechanisms. These mechanisms can be organized into three general categories wherein water acts as (1) a resource or habitat for biota, (2) a vector for connectivity and exchange of energy, materials, and organisms, and (3) as an agent of geomorphic change and disturbance. These latter two roles are highlighted in current models, which emphasize hydrologic connectivity and geomorphic change as determinants of the spatial and temporal distributions of species and processes in river systems. Water availability, on the other hand, has received less attention as a driver of ecological pattern, despite the prevalence of intermittent streams, and strong potential for environmental change to alter the spatial extent of drying in many regions. Here we summarize long-term research from a Sonoran Desert watershed to illustrate how spatial patterns of ecosystem structure and functioning reflect shifts in the relative importance of different 'roles of water' across scales of drainage size. These roles are distributed and interact hierarchically in the landscape, and for the bulk of the drainage network it is the duration of water availability that represents the primary determinant of ecological processes. Only for the largest catchments, with the most permanent flow regimes, do flood-associated disturbances and hydrologic exchange emerge as important drivers of local dynamics. While desert basins represent an extreme case, the diversity of mechanisms by which the availability and flow of water influence ecosystem structure and functioning are general. Predicting how river ecosystems may respond to future environmental pressures will require clear understanding of how changes in the spatial extent and relative overlap of these different roles of water shape ecological patterns. © 2013 Sponseller et al.
Resumo:
Over 2,000 adults in their sixties completed the Centrality of Event Scale (CES) for the traumatic or negative event that now troubled them the most and for their most positive life event, as well as measures of current PTSD symptoms, depression, well-being, and personality. Consistent with the notion of a positivity bias in old age, the positive events were judged to be markedly more central to life story and identity than were the negative events. The centrality of positive events was unrelated to measures of PTSD symptoms and emotional distress, whereas the centrality of the negative event showed clear positive correlations with these measures. The centrality of the positive events increased with increasing time since the events, whereas the centrality of the negative events decreased. The life distribution of the positive events showed a marked peak in young adulthood whereas the life distribution for the negative events peaked at the participants' present age. The positive events were mostly events from the cultural life script-that is, culturally shared representations of the timing of major transitional events. Overall, our findings show that positive and negative autobiographical events relate markedly differently to life story and identity. Positive events become central to life story and identity primarily through their correspondence with cultural norms. Negative events become central through mechanisms associated with emotional distress.
Resumo:
Despite knowing a familiar individual (such as a daughter) well, anecdotal evidence suggests that naming errors can occur among very familiar individuals. Here, we investigate the conditions surrounding these types of errors, or misnamings, in which a person (the misnamer) incorrectly calls a familiar individual (the misnamed) by someone else's name (the named). Across 5 studies including over 1,700 participants, we investigated the prevalence of the phenomenon of misnaming, identified factors underlying why it may occur, and tested potential mechanisms. We included undergraduates and MTurk workers and asked questions of both the misnamed and the misnamer. We find that familiar individuals are often misnamed with the name of another member of the same semantic category; family members are misnamed with another family member's name and friends are misnamed with another friend's name. Phonetic similarity between names also leads to misnamings; however, the size of this effect was smaller than that of the semantic category effect. Overall, the misnaming of familiar individuals is driven by the relationship between the misnamer, misnamed, and named; phonetic similarity between the incorrect name used by the misnamer and the correct name also plays a role in misnaming.