2 resultados para prey preference

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of adaptive divergence have traditionally focused on the ecological causes of trait diversification, while the ecological consequences of phenotypic divergence remain relatively unexplored. Divergence in predator foraging traits, in particular, has the potential to impact the structure and dynamics of ecological communities. To examine the effects of predator trait divergence on prey communities, we exposed zooplankton communities in lake mesocosms to predation from either anadromous or landlocked (freshwater resident) alewives, which have undergone recent and rapid phenotypic differentiation in foraging traits (gape width, gill raker spacing, and prey size-selectivity). Anadromous alewives, which exploit large prey items, significantly reduced the mean body size, total biomass, species richness, and diversity of crustacean zooplankton relative to landlocked alewives, which exploit smaller prey. The zooplankton responses observed in this experiment are consistent with patterns observed in lakes. This study provides direct evidence that phenotypic divergence in predators, even in its early stages, can play a critical role in determining prey community structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a "sharpening" of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems.