2 resultados para predictive habitat mapping

em Duke University


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyzed projections of current and future ambient temperatures along the eastern United States in relationship to the thermal tolerance of harbor seals in air. Using the earth systems model (HadGEM2-ES) and representative concentration pathways (RCPs) 4.5 and 8.5, which are indicative of two different atmospheric CO2 concentrations, we were able to examine possible shifts in distribution based on three metrics: current preferences, the thermal limit of juveniles, and the thermal limits of adults. Our analysis focused on average ambient temperatures because harbor seals are least effective at regulating their body temperature in air, making them most susceptible to rising air temperatures in the coming years. Our study focused on the months of May, June, and August from 2041-2060 (2050) and 2061-2080 (2070) as these are the historic months in which harbor seals are known to annually come ashore to pup, breed, and molt. May, June, and August are also some of the warmest months of the year. We found that breeding colonies along the eastern United States will be limited by the thermal tolerance of juvenile harbor seals in air, while their foraging range will extend as far south as the thermal tolerance of adult harbor seals in air. Our analysis revealed that in 2070, harbor seal pups should be absent from the United States coastline nearing the end of the summer due to exceptionally high air temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During mitotic cell cycles, DNA experiences many types of endogenous and exogenous damaging agents that could potentially cause double strand breaks (DSB). In S. cerevisiae, DSBs are primarily repaired by mitotic recombination and as a result, could lead to loss-of-heterozygosity (LOH). Genetic recombination can happen in both meiosis and mitosis. While genome-wide distribution of meiotic recombination events has been intensively studied, mitotic recombination events have not been mapped unbiasedly throughout the genome until recently. Methods for selecting mitotic crossovers and mapping the positions of crossovers have recently been developed in our lab. Our current approach uses a diploid yeast strain that is heterozygous for about 55,000 SNPs, and employs SNP-Microarrays to map LOH events throughout the genome. These methods allow us to examine selected crossovers and unselected mitotic recombination events (crossover, noncrossover and BIR) at about 1 kb resolution across the genome. Using this method, we generated maps of spontaneous and UV-induced LOH events. In this study, we explore machine learning and variable selection techniques to build a predictive model for where the LOH events occur in the genome.

Randomly from the yeast genome, we simulated control tracts resembling the LOH tracts in terms of tract lengths and locations with respect to single-nucleotide-polymorphism positions. We then extracted roughly 1,100 features such as base compositions, histone modifications, presence of tandem repeats etc. and train classifiers to distinguish control tracts and LOH tracts. We found interesting features of good predictive values. We also found that with the current repertoire of features, the prediction is generally better for spontaneous LOH events than UV-induced LOH events.