3 resultados para plasma inhibitory factors
em Duke University
Resumo:
1. Plasma lipids and lipoproteins of free-ranging howling monkeys from Costa Rica (Alouatta palliata), aged 5 months to 23 years, were characterized. 2. High density lipoproteins were lipid-rich, similar to HDL2 of human plasma. 3. Fatty acid compositions of major lipid classes of very low, low and high density lipoproteins differed among social groups, possibly due to both dietary and genetic factors. 4. Low and high density lipoprotein phospholipids were enriched in phosphatidylethanolamine. 5. Howler plasma cross reacted with antihuman apoA-I antibodies but not with antihuman LDL antibodies. 6. No dimeric form of apoA-II was present, unlike human apoA-II.
Resumo:
The beta-adrenergic receptor kinase (beta ARK) phosphorylates its membrane-associated receptor substrates, such as the beta-adrenergic receptor, triggering events leading to receptor desensitization. beta ARK activity is markedly stimulated by the isoprenylated beta gamma subunit complex of heterotrimeric guanine nucleotide-binding proteins (G beta gamma), which translocates the kinase to the plasma membrane and thereby targets it to its receptor substrate. The amino-terminal two-thirds of beta ARK1 composes the receptor recognition and catalytic domains, while the carboxyl third contains the G beta gamma binding sequences, the targeting domain. We prepared this domain as a recombinant His6 fusion protein from Escherichia coli and found that it had both independent secondary structure and functional activity. We demonstrated the inhibitory properties of this domain against G beta gamma activation of type II adenylyl cyclase both in a reconstituted system utilizing Sf9 insect cell membranes and in a permeabilized 293 human embryonic kidney cell system. Gi alpha-mediated inhibition of adenylyl cyclase was not affected. These data suggest that this His6 fusion protein derived from the carboxyl terminus of beta ARK1 provides a specific probe for defining G beta gamma-mediated processes and for studying the structural features of a G beta gamma-binding domain.
Resumo:
© 2016 International Journal of the Economics of Business.Human blood plasma and its derivative therapies have been used therapeutically for more than 50 years, after first being widely used to treat injuries during World War II. In certain countries, manufacturers of these therapies – known as plasma-derived medicinal products (PDMPs) – compensate plasma donors, raising healthcare and ethical concerns among some parties. In particular, the World Health Organization has taken a strong advocacy position that compensation for blood donations should be eliminated worldwide. This review evaluates the key economic factors underlying the supply and demand for PDMPs and the evidence pointing to the policy options that are most likely to maintain a reliable supply of life-sustaining therapies. It concludes that compensated plasma donation is important for maintaining adequate and consistent supplies of plasma and limits the risk of under-treatment for the foreseeable future.