3 resultados para phyto-insecticides

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indoor residual spraying (IRS) has become an increasingly popular method of insecticide use for malaria control, and many recent studies have reported on its effectiveness in reducing malaria burden in a single community or region. There is a need for systematic review and integration of the published literature on IRS and the contextual determining factors of its success in controlling malaria. This study reports the findings of a meta-regression analysis based on 13 published studies, which were chosen from more than 400 articles through a systematic search and selection process. The summary relative risk for reducing malaria prevalence was 0.38 (95% confidence interval = 0.31-0.46), which indicated a risk reduction of 62%. However, an excessive degree of heterogeneity was found between the studies. The meta-regression analysis indicates that IRS is more effective with high initial prevalence, multiple rounds of spraying, use of DDT, and in regions with a combination of Plasmodium falciparum and P. vivax malaria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Policy decisions for malaria control are often difficult to make as decision-makers have to carefully consider an array of options and respond to the needs of a large number of stakeholders. This study assessed the factors and specific objectives that influence malaria control policy decisions, as a crucial first step towards developing an inclusive malaria decision analysis support tool (MDAST). METHODS: Country-specific stakeholder engagement activities using structured questionnaires were carried out in Kenya, Uganda and Tanzania. The survey respondents were drawn from a non-random purposeful sample of stakeholders, targeting individuals in ministries and non-governmental organizations whose policy decisions and actions are likely to have an impact on the status of malaria. Summary statistics across the three countries are presented in aggregate. RESULTS: Important findings aggregated across countries included a belief that donor preferences and agendas were exerting too much influence on malaria policies in the countries. Respondents on average also thought that some relevant objectives such as engaging members of parliament by the agency responsible for malaria control in a particular country were not being given enough consideration in malaria decision-making. Factors found to influence decisions regarding specific malaria control strategies included donor agendas, costs, effectiveness of interventions, health and environmental impacts, compliance and/acceptance, financial sustainability, and vector resistance to insecticides. CONCLUSION: Malaria control decision-makers in Kenya, Uganda and Tanzania take into account health and environmental impacts as well as cost implications of different intervention strategies. Further engagement of government legislators and other policy makers is needed in order to increase funding from domestic sources, reduce donor dependence, sustain interventions and consolidate current gains in malaria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insecticide treated bed nets and indoor residual spraying are the most widely used vector control methods in Africa. The World Health Organization now recommends four classes of insecticides for use against adult mosquitoes in public health programs. Of these four classes of insecticides, pyrethroids have become the insecticides of choice in treating mosquito bed nets and in the use of indoor spraying to prevent malaria transmission. Pyrethroids are not only used in malaria control but also in agriculture to protect against pest insects. This concurrent use of pyrethroids in vector control and protection of crops from pests in agriculture may exert selection pressure on mosquito larval population and induce resistance to this class of insecticides. The main objective of our study was to explore the role of agricultural chemicals and the response of mosquitoes to pyrethroids in an area of high malaria transmission.

We used a cross-sectional study design. This was a two-step study involving both mosquitoes and human subjects. In this study, we collected larvae growing in breeding sites affected by different agricultural practices. We used purposive sampling to identify active mosquito breeding sites and then interviewed households adjacent to those breeding sites to learn about their agricultural practices that might influence the response of mosquitoes to pyrethroids. We also performed secondary analysis of larval data from a previous case-control study by Obala et al.