3 resultados para phosphorus enrichment

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wetland restoration is a commonly used approach to reduce nutrient loading to freshwater and coastal ecosystems, with many wetland restoration efforts occurring in former agricultural fields. Restored wetlands are expected to be effective at retaining or removing both nitrogen and phosphorus (P), yet restoring wetland hydrology to former agricultural fields can lead to the release of legacy fertilizer P. Here, we examined P cycling and export following rewetting of the Timberlake Restoration Project, a 440 ha restored riverine wetland complex in the coastal plain of North Carolina. We also compared P cycling within the restored wetland to two minimally disturbed nearby wetlands and an adjacent active agricultural field. In the restored wetland we observed increased soluble reactive phosphorus (SRP) concentrations following initial flooding, consistent with our expectations that P bound to iron would be released under reducing conditions. SRP concentrations in spring were 2.5 times higher leaving the restored wetland than a forested wetland and an agricultural field. During two large-scale drawdown and rewetting experiments we decreased the water depth by 1 m in ∼10 ha of inundated wetland for 2 weeks, followed by reflooding. Rewetting following experimental drainage had no effect on SRP concentrations in winter, but SRP concentrations did increase when the experiment was repeated during summer. Our best estimates suggest that this restored wetland could release legacy fertilizer P for up to a decade following hydrologic restoration. The time lag between restoration and biogeochemical recovery should be incorporated into management strategies of restored wetlands. Copyright 2010 by the American Geophysical Union.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a strong need to increase the number of undergraduate students who pursue careers in science to provide the "fuel" that will power a science and technology-driven U.S. economy. Prior research suggests that both evidence-based teaching methods and early undergraduate research experiences may help to increase retention rates in the sciences. In this study, we examined the effect of a program that included 1) a Summer enrichment 2-wk minicourse and 2) an authentic Fall research course, both of which were designed specifically to support students' science motivation. Undergraduates who participated in the pharmacology-based enrichment program significantly improved their knowledge of basic biology and chemistry concepts; reported high levels of science motivation; and were likely to major in a biological, chemical, or biomedical field. Additionally, program participants who decided to major in biology or chemistry were significantly more likely to choose a pharmacology concentration than those majoring in biology or chemistry who did not participate in the enrichment program. Thus, by supporting students' science motivation, we can increase the number of students who are interested in science and science careers.