4 resultados para performance practice

em Duke University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Into the Bends of Time is a 40-minute work in seven movements for a large chamber orchestra with electronics, utilizing real-time computer-assisted processing of music performed by live musicians. The piece explores various combinations of interactive relationships between players and electronics, ranging from relatively basic processing effects to musical gestures achieved through stages of computer analysis, in which resulting sounds are crafted according to parameters of the incoming musical material. Additionally, some elements of interaction are multi-dimensional, in that they rely on the participation of two or more performers fulfilling distinct roles in the interactive process with the computer in order to generate musical material. Through processes of controlled randomness, several electronic effects induce elements of chance into their realization so that no two performances of this work are exactly alike. The piece gets its name from the notion that real-time computer-assisted processing, in which sound pressure waves are transduced into electrical energy, converted to digital data, artfully modified, converted back into electrical energy and transduced into sound waves, represents a “bending” of time.

The Bill Evans Trio featuring bassist Scott LaFaro and drummer Paul Motian is widely regarded as one of the most important and influential piano trios in the history of jazz, lauded for its unparalleled level of group interaction. Most analyses of Bill Evans’ recordings, however, focus on his playing alone and fail to take group interaction into account. This paper examines one performance in particular, of Victor Young’s “My Foolish Heart” as recorded in a live performance by the Bill Evans Trio in 1961. In Part One, I discuss Steve Larson’s theory of musical forces (expanded by Robert S. Hatten) and its applicability to jazz performance. I examine other recordings of ballads by this same trio in order to draw observations about normative ballad performance practice. I discuss meter and phrase structure and show how the relationship between the two is fixed in a formal structure of repeated choruses. I then develop a model of perpetual motion based on the musical forces inherent in this structure. In Part Two, I offer a full transcription and close analysis of “My Foolish Heart,” showing how elements of group interaction work with and against the musical forces inherent in the model of perpetual motion to achieve an unconventional, dynamic use of double-time. I explore the concept of a unified agential persona and discuss its role in imparting the song’s inherent rhetorical tension to the instrumental musical discourse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Practice can improve performance on visual search tasks; the neural mechanisms underlying such improvements, however, are not clear. Response time typically shortens with practice, but which components of the stimulus-response processing chain facilitate this behavioral change? Improved search performance could result from enhancements in various cognitive processing stages, including (1) sensory processing, (2) attentional allocation, (3) target discrimination, (4) motor-response preparation, and/or (5) response execution. We measured event-related potentials (ERPs) as human participants completed a five-day visual-search protocol in which they reported the orientation of a color popout target within an array of ellipses. We assessed changes in behavioral performance and in ERP components associated with various stages of processing. After practice, response time decreased in all participants (while accuracy remained consistent), and electrophysiological measures revealed modulation of several ERP components. First, amplitudes of the early sensory-evoked N1 component at 150 ms increased bilaterally, indicating enhanced visual sensory processing of the array. Second, the negative-polarity posterior-contralateral component (N2pc, 170-250 ms) was earlier and larger, demonstrating enhanced attentional orienting. Third, the amplitude of the sustained posterior contralateral negativity component (SPCN, 300-400 ms) decreased, indicating facilitated target discrimination. Finally, faster motor-response preparation and execution were observed after practice, as indicated by latency changes in both the stimulus-locked and response-locked lateralized readiness potentials (LRPs). These electrophysiological results delineate the functional plasticity in key mechanisms underlying visual search with high temporal resolution and illustrate how practice influences various cognitive and neural processing stages leading to enhanced behavioral performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation explores the complex process of organizational change, applying a behavioral lens to understand change in processes, products, and search behaviors. Chapter 1 examines new practice adoption, exploring factors that predict the extent to which routines are adopted “as designed” within the organization. Using medical record data obtained from the hospital’s Electronic Health Record (EHR) system I develop a novel measure of the “gap” between routine “as designed” and routine “as realized.” I link this to a survey administered to the hospital’s professional staff following the adoption of a new EHR system and find that beliefs about the expected impact of the change shape fidelity of the adopted practice to its design. This relationship is more pronounced in care units with experienced professionals and less pronounced when the care unit includes departmental leadership. This research offers new insights into the determinants of routine change in organizations, in particular suggesting the beliefs held by rank-and-file members of an organization are critical in new routine adoption. Chapter 2 explores changes to products, specifically examining culling behaviors in the mobile device industry. Using a panel of quarterly mobile device sales in Germany from 2004-2009, this chapter suggests that the organization’s response to performance feedback is conditional upon the degree to which decisions are centralized. While much of the research on product exit has pointed to economic drivers or prior experience, these central finding of this chapter—that performance below aspirations decreases the rate of phase-out—suggests that firms seek local solutions when doing poorly, which is consistent with behavioral explanations of organizational action. Chapter 3 uses a novel text analysis approach to examine how the allocation of attention within organizational subunits shapes adaptation in the form of search behaviors in Motorola from 1974-1997. It develops a theory that links organizational attention to search, and the results suggest a trade-off between both attentional specialization and coupling on search scope and depth. Specifically, specialized unit attention to a more narrow set of problems increases search scope but reduces search depth; increased attentional coupling also increases search scope at the cost of depth. This novel approach and these findings help clarify extant research on the behavioral outcomes of attention allocation, which have offered mixed results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-ray computed tomography (CT) is a non-invasive medical imaging technique that generates cross-sectional images by acquiring attenuation-based projection measurements at multiple angles. Since its first introduction in the 1970s, substantial technical improvements have led to the expanding use of CT in clinical examinations. CT has become an indispensable imaging modality for the diagnosis of a wide array of diseases in both pediatric and adult populations [1, 2]. Currently, approximately 272 million CT examinations are performed annually worldwide, with nearly 85 million of these in the United States alone [3]. Although this trend has decelerated in recent years, CT usage is still expected to increase mainly due to advanced technologies such as multi-energy [4], photon counting [5], and cone-beam CT [6].

Despite the significant clinical benefits, concerns have been raised regarding the population-based radiation dose associated with CT examinations [7]. From 1980 to 2006, the effective dose from medical diagnostic procedures rose six-fold, with CT contributing to almost half of the total dose from medical exposure [8]. For each patient, the risk associated with a single CT examination is likely to be minimal. However, the relatively large population-based radiation level has led to enormous efforts among the community to manage and optimize the CT dose.

As promoted by the international campaigns Image Gently and Image Wisely, exposure to CT radiation should be appropriate and safe [9, 10]. It is thus a responsibility to optimize the amount of radiation dose for CT examinations. The key for dose optimization is to determine the minimum amount of radiation dose that achieves the targeted image quality [11]. Based on such principle, dose optimization would significantly benefit from effective metrics to characterize radiation dose and image quality for a CT exam. Moreover, if accurate predictions of the radiation dose and image quality were possible before the initiation of the exam, it would be feasible to personalize it by adjusting the scanning parameters to achieve a desired level of image quality. The purpose of this thesis is to design and validate models to quantify patient-specific radiation dose prospectively and task-based image quality. The dual aim of the study is to implement the theoretical models into clinical practice by developing an organ-based dose monitoring system and an image-based noise addition software for protocol optimization.

More specifically, Chapter 3 aims to develop an organ dose-prediction method for CT examinations of the body under constant tube current condition. The study effectively modeled the anatomical diversity and complexity using a large number of patient models with representative age, size, and gender distribution. The dependence of organ dose coefficients on patient size and scanner models was further evaluated. Distinct from prior work, these studies use the largest number of patient models to date with representative age, weight percentile, and body mass index (BMI) range.

With effective quantification of organ dose under constant tube current condition, Chapter 4 aims to extend the organ dose prediction system to tube current modulated (TCM) CT examinations. The prediction, applied to chest and abdominopelvic exams, was achieved by combining a convolution-based estimation technique that quantifies the radiation field, a TCM scheme that emulates modulation profiles from major CT vendors, and a library of computational phantoms with representative sizes, ages, and genders. The prospective quantification model is validated by comparing the predicted organ dose with the dose estimated based on Monte Carlo simulations with TCM function explicitly modeled.

Chapter 5 aims to implement the organ dose-estimation framework in clinical practice to develop an organ dose-monitoring program based on a commercial software (Dose Watch, GE Healthcare, Waukesha, WI). In the first phase of the study we focused on body CT examinations, and so the patient’s major body landmark information was extracted from the patient scout image in order to match clinical patients against a computational phantom in the library. The organ dose coefficients were estimated based on CT protocol and patient size as reported in Chapter 3. The exam CTDIvol, DLP, and TCM profiles were extracted and used to quantify the radiation field using the convolution technique proposed in Chapter 4.

With effective methods to predict and monitor organ dose, Chapters 6 aims to develop and validate improved measurement techniques for image quality assessment. Chapter 6 outlines the method that was developed to assess and predict quantum noise in clinical body CT images. Compared with previous phantom-based studies, this study accurately assessed the quantum noise in clinical images and further validated the correspondence between phantom-based measurements and the expected clinical image quality as a function of patient size and scanner attributes.

Chapter 7 aims to develop a practical strategy to generate hybrid CT images and assess the impact of dose reduction on diagnostic confidence for the diagnosis of acute pancreatitis. The general strategy is (1) to simulate synthetic CT images at multiple reduced-dose levels from clinical datasets using an image-based noise addition technique; (2) to develop quantitative and observer-based methods to validate the realism of simulated low-dose images; (3) to perform multi-reader observer studies on the low-dose image series to assess the impact of dose reduction on the diagnostic confidence for multiple diagnostic tasks; and (4) to determine the dose operating point for clinical CT examinations based on the minimum diagnostic performance to achieve protocol optimization.

Chapter 8 concludes the thesis with a summary of accomplished work and a discussion about future research.