4 resultados para peak demand

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In some supply chains, materials are ordered periodically according to local information. This paper investigates how to improve the performance of such a supply chain. Specifically, we consider a serial inventory system in which each stage implements a local reorder interval policy; i.e., each stage orders up to a local basestock level according to a fixed-interval schedule. A fixed cost is incurred for placing an order. Two improvement strategies are considered: (1) expanding the information flow by acquiring real-time demand information and (2) accelerating the material flow via flexible deliveries. The first strategy leads to a reorder interval policy with full information; the second strategy leads to a reorder point policy with local information. Both policies have been studied in the literature. Thus, to assess the benefit of these strategies, we analyze the local reorder interval policy. We develop a bottom-up recursion to evaluate the system cost and provide a method to obtain the optimal policy. A numerical study shows the following: Increasing the flexibility of deliveries lowers costs more than does expanding information flow; the fixed order costs and the system lead times are key drivers that determine the effectiveness of these improvement strategies. In addition, we find that using optimal batch sizes in the reorder point policy and demand rate to infer reorder intervals may lead to significant cost inefficiency. © 2010 INFORMS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal-optical analysis is a conventional method for classifying carbonaceous aerosols as organic carbon (OC) and elemental carbon (EC). This article examines the effects of three different temperature protocols on the measured EC. For analyses of parallel punches from the same ambient sample, the protocol with the highest peak helium-mode temperature (870°C) gives the smallest amount of EC, while the protocol with the lowest peak helium-mode temperature (550°C) gives the largest amount of EC. These differences are observed when either sample transmission or reflectance is used to define the OC/EC split. An important issue is the effect of the peak helium-mode temperature on the relative rate at which different types of carbon with different optical properties evolve from the filter. Analyses of solvent-extracted samples are used to demonstrate that high temperatures (870°C) lead to premature EC evolution in the helium-mode. For samples collected in Pittsburgh, this causes the measured EC to be biased low because the attenuation coefficient of pyrolyzed carbon is consistently higher than that of EC. While this problem can be avoided by lowering the peak helium-mode temperature, analyses of wood smoke dominated ambient samples and levoglucosan-spiked filters indicate that too low helium-mode peak temperatures (550°C) allow non-light absorbing carbon to slip into the oxidizing mode of the analysis. If this carbon evolves after the OC/EC split, it biases the EC measurements high. Given the complexity of ambient aerosols, there is unlikely to be a single peak helium-mode temperature at which both of these biases can be avoided. Copyright © American Association for Aerosol Research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We estimate a carbon mitigation cost curve for the U.S. commercial sector based on econometric estimation of the responsiveness of fuel demand and equipment choices to energy price changes. The model econometrically estimates fuel demand conditional on fuel choice, which is characterized by a multinomial logit model. Separate estimation of end uses (e.g., heating, cooking) using the U.S. Commercial Buildings Energy Consumption Survey allows for exceptionally detailed estimation of price responsiveness disaggregated by end use and fuel type. We then construct aggregate long-run elasticities, by fuel type, through a series of simulations; own-price elasticities range from -0.9 for district heat services to -2.9 for fuel oil. The simulations form the basis of a marginal cost curve for carbon mitigation, which suggests that a price of $20 per ton of carbon would result in an 8% reduction in commercial carbon emissions, and a price of $100 per ton would result in a 28% reduction. © 2008 Elsevier B.V. All rights reserved.