2 resultados para peace journalism
em Duke University
Resumo:
In the study reported here, we examined posttraumatic stress disorder (PTSD) symptoms in 746 Danish soldiers measured on five occasions before, during, and after deployment to Afghanistan. Using latent class growth analysis, we identified six trajectories of change in PTSD symptoms. Two resilient trajectories had low levels across all five times, and a new-onset trajectory started low and showed a marked increase of PTSD symptoms. Three temporary-benefit trajectories, not previously described in the literature, showed decreases in PTSD symptoms during (or immediately after) deployment, followed by increases after return from deployment. Predeployment emotional problems and predeployment traumas, especially childhood adversities, were predictors for inclusion in the nonresilient trajectories, whereas deployment-related stress was not. These findings challenge standard views of PTSD in two ways. First, they show that factors other than immediately preceding stressors are critical for PTSD development, with childhood adversities being central. Second, they demonstrate that the development of PTSD symptoms shows heterogeneity, which indicates the need for multiple measurements to understand PTSD and identify people in need of treatment.
Resumo:
Our media is saturated with claims of ``facts'' made from data. Database research has in the past focused on how to answer queries, but has not devoted much attention to discerning more subtle qualities of the resulting claims, e.g., is a claim ``cherry-picking''? This paper proposes a Query Response Surface (QRS) based framework that models claims based on structured data as parameterized queries. A key insight is that we can learn a lot about a claim by perturbing its parameters and seeing how its conclusion changes. This framework lets us formulate and tackle practical fact-checking tasks --- reverse-engineering vague claims, and countering questionable claims --- as computational problems. Within the QRS based framework, we take one step further, and propose a problem along with efficient algorithms for finding high-quality claims of a given form from data, i.e. raising good questions, in the first place. This is achieved to using a limited number of high-valued claims to represent high-valued regions of the QRS. Besides the general purpose high-quality claim finding problem, lead-finding can be tailored towards specific claim quality measures, also defined within the QRS framework. An example of uniqueness-based lead-finding is presented for ``one-of-the-few'' claims, landing in interpretable high-quality claims, and an adjustable mechanism for ranking objects, e.g. NBA players, based on what claims can be made for them. Finally, we study the use of visualization as a powerful way of conveying results of a large number of claims. An efficient two stage sampling algorithm is proposed for generating input of 2d scatter plot with heatmap, evalutaing a limited amount of data, while preserving the two essential visual features, namely outliers and clusters. For all the problems, we present real-world examples and experiments that demonstrate the power of our model, efficiency of our algorithms, and usefulness of their results.