5 resultados para participant roles
em Duke University
Resumo:
Diversity of T cell receptors (TCR) and immunoglobulins (Ig) is generated by V(D)J recombination of antigen receptor (AgR) loci. The Tcra-Tcrd locus is of particular interest because it displays a nested organization of Tcrd and Tcra gene segments and V(D)J recombination follows an intricate developmental program to assemble both TCRδ and TCRα repertoires. However, the mechanisms that dictate the developmental regulation of V(D)J recombination of the Tcra-Tcrd locus remain unclear.
We have previously shown that CCCTC-binding factor (CTCF) regulates Tcra gene transcription and rearrangement through organizing chromatin looping between CTCF- binding elements (CBEs). This study is one of many showing that CTCF functions as a chromatin organizer and transcriptional regulator genome-wide. However, detailed understanding of the impact of specific CBEs is needed to fully comprehend the biological function of CTCF and how CTCF influences the generation of the TCR repertoire during thymocyte development. Thus, we generated several mouse models with genetically modified CBEs to gain insight into the CTCF-dependent regulation of the Tcra-Tcrd locus. We revealed a CTCF-dependent chromatin interaction network at the Tcra-Tcrd locus in double-negative thymocytes. Disruption of a discrete chromatin loop encompassing Dδ, Jδ and Cδ gene segments allowed a single Vδ segment to frequently contact and rearrange to diversity and joining gene segments and dominate the adult TCRδ repertoire. Disruption of this loop also narrowed the TCRα repertoire, which, we believe, followed as a consequence of the restricted TCRδ repertoire. Hence, a single CTCF-mediated chromatin loop directly regulates TCRδ diversity and indirectly regulates TCRα diversity. In addition, we showed that insertion of an ectopic CBE can modify chromatin interactions and disrupt the rearrangement of particular Vδ gene segments. Finally, we investigated the role of YY1 in early T cell development by conditionally deleting YY1 in developing thymocytes. We found that early ablation of YY1 caused severe developmental defects in the DN compartment due to a dramatic increase in DN thymocyte apoptosis. Furthermore, late ablation of YY1 resulted in increased apoptosis of DP thymocytes and a restricted TCRα repertoire. Mechanistically, we showed that p53 was upregulated in both DN and DP YY1-deficient thymocytes. Eliminating p53 in YY1-deficient thymocytes rescued the survival and developmental defects, indicating that these YY1-dependent defects were p53-mediated. We conclude that YY1 is required to maintain cell viability during thymocyte development by thwarting the accumulation of p53.
Overall, this thesis work has shown that CTCF-dependent looping provides a central framework for lineage- and developmental stage-specific regulation of Tcra-Tcrd gene expression and rearrangements. In addition, we identified YY1 as a novel regulator of thymocyte viability.
Resumo:
All organisms live in complex habitats that shape the course of their evolution by altering the phenotype expressed by a given genotype (a phenomenon known as phenotypic plasticity) and simultaneously by determining the evolutionary fitness of that phenotype. In some cases, phenotypic evolution may alter the environment experienced by future generations. This dissertation describes how genetic and environmental variation act synergistically to affect the evolution of glucosinolate defensive chemistry and flowering time in Boechera stricta, a wild perennial herb. I focus particularly on plant-associated microbes as a part of the plant’s environment that may alter trait evolution and in turn be affected by the evolution of those traits. In the first chapter I measure glucosinolate production and reproductive fitness of over 1,500 plants grown in common gardens in four diverse natural habitats, to describe how patterns of plasticity and natural selection intersect and may influence glucosinolate evolution. I detected extensive genetic variation for glucosinolate plasticity and determined that plasticity may aid colonization of new habitats by moving phenotypes in the same direction as natural selection. In the second chapter I conduct a greenhouse experiment to test whether naturally-occurring soil microbial communities contributed to the differences in phenotype and selection that I observed in the field experiment. I found that soil microbes cause plasticity of flowering time but not glucosinolate production, and that they may contribute to natural selection on both traits; thus, non-pathogenic plant-associated microbes are an environmental feature that could shape plant evolution. In the third chapter, I combine a multi-year, multi-habitat field experiment with high-throughput amplicon sequencing to determine whether B. stricta-associated microbial communities are shaped by plant genetic variation. I found that plant genotype predicts the diversity and composition of leaf-dwelling bacterial communities, but not root-associated bacterial communities. Furthermore, patterns of host genetic control over associated bacteria were largely site-dependent, indicating an important role for genotype-by-environment interactions in microbiome assembly. Together, my results suggest that soil microbes influence the evolution of plant functional traits and, because they are sensitive to plant genetic variation, this trait evolution may alter the microbial neighborhood of future B. stricta generations. Complex patterns of plasticity, selection, and symbiosis in natural habitats may impact the evolution of glucosinolate profiles in Boechera stricta.
Resumo:
The question of evaluations of development projects has been widely debated within the field of international development, with scholars and development practitioners calling for increased community-driven evaluations. However, there has been a paucity of research in community-led project evaluations, and a largely absent investigation utilizing visual anthropology/sociology methodologies. This paper seeks to shift this power by giving voice to the intended beneficiaries of an eco-tourism project in a rural indigenous Guatemala village. Through photographs taken by community members and corresponding interviews, this paper shows the way in which community members have and continue to reframe the idea of development in their village. Specifically, my analysis reveals how residents see changing forms of access, how they reframe ideas of beauty and modernization, and how they reframe their relationship to the land through Western conservation and private property ideals. This research thus provides an alternative narrative to the Western NGO’s evaluations and knowledge production, especially in respect to development and indigenous knowledge. By showing how community members are reframing the story of development, this paper demonstrates the usefulness of using participatory documentary photography in community-led evaluations, and helps balance the playing field by providing a much-needed alternative narrative of project evaluation.
Resumo:
To provide biological insights into transcriptional regulation, a couple of groups have recently presented models relating the promoter DNA-bound transcription factors (TFs) to downstream gene’s mean transcript level or transcript production rates over time. However, transcript production is dynamic in response to changes of TF concentrations over time. Also, TFs are not the only factors binding to promoters; other DNA binding factors (DBFs) bind as well, especially nucleosomes, resulting in competition between DBFs for binding at same genomic location. Additionally, not only TFs, but also some other elements regulate transcription. Within core promoter, various regulatory elements influence RNAPII recruitment, PIC formation, RNAPII searching for TSS, and RNAPII initiating transcription. Moreover, it is proposed that downstream from TSS, nucleosomes resist RNAPII elongation.
Here, we provide a machine learning framework to predict transcript production rates from DNA sequences. We applied this framework in the S. cerevisiae yeast for two scenarios: a) to predict the dynamic transcript production rate during the cell cycle for native promoters; b) to predict the mean transcript production rate over time for synthetic promoters. As far as we know, our framework is the first successful attempt to have a model that can predict dynamic transcript production rates from DNA sequences only: with cell cycle data set, we got Pearson correlation coefficient Cp = 0.751 and coefficient of determination r2 = 0.564 on test set for predicting dynamic transcript production rate over time. Also, for DREAM6 Gene Promoter Expression Prediction challenge, our fitted model outperformed all participant teams, best of all teams, and a model combining best team’s k-mer based sequence features and another paper’s biologically mechanistic features, in terms of all scoring metrics.
Moreover, our framework shows its capability of identifying generalizable fea- tures by interpreting the highly predictive models, and thereby provide support for associated hypothesized mechanisms about transcriptional regulation. With the learned sparse linear models, we got results supporting the following biological insights: a) TFs govern the probability of RNAPII recruitment and initiation possibly through interactions with PIC components and transcription cofactors; b) the core promoter amplifies the transcript production probably by influencing PIC formation, RNAPII recruitment, DNA melting, RNAPII searching for and selecting TSS, releasing RNAPII from general transcription factors, and thereby initiation; c) there is strong transcriptional synergy between TFs and core promoter elements; d) the regulatory elements within core promoter region are more than TATA box and nucleosome free region, suggesting the existence of still unidentified TAF-dependent and cofactor-dependent core promoter elements in yeast S. cerevisiae; e) nucleosome occupancy is helpful for representing +1 and -1 nucleosomes’ regulatory roles on transcription.