7 resultados para pacs: data handling techniques
em Duke University
Resumo:
INTRODUCTION: The characterization of urinary calculi using noninvasive methods has the potential to affect clinical management. CT remains the gold standard for diagnosis of urinary calculi, but has not reliably differentiated varying stone compositions. Dual-energy CT (DECT) has emerged as a technology to improve CT characterization of anatomic structures. This study aims to assess the ability of DECT to accurately discriminate between different types of urinary calculi in an in vitro model using novel postimage acquisition data processing techniques. METHODS: Fifty urinary calculi were assessed, of which 44 had >or=60% composition of one component. DECT was performed utilizing 64-slice multidetector CT. The attenuation profiles of the lower-energy (DECT-Low) and higher-energy (DECT-High) datasets were used to investigate whether differences could be seen between different stone compositions. RESULTS: Postimage acquisition processing allowed for identification of the main different chemical compositions of urinary calculi: brushite, calcium oxalate-calcium phosphate, struvite, cystine, and uric acid. Statistical analysis demonstrated that this processing identified all stone compositions without obvious graphical overlap. CONCLUSION: Dual-energy multidetector CT with postprocessing techniques allows for accurate discrimination among the main different subtypes of urinary calculi in an in vitro model. The ability to better detect stone composition may have implications in determining the optimum clinical treatment modality for urinary calculi from noninvasive, preprocedure radiological assessment.
Resumo:
An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions.
This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods.
On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.
In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.
We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,
and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy.
In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.
Resumo:
Human activities represent a significant burden on the global water cycle, with large and increasing demands placed on limited water resources by manufacturing, energy production and domestic water use. In addition to changing the quantity of available water resources, human activities lead to changes in water quality by introducing a large and often poorly-characterized array of chemical pollutants, which may negatively impact biodiversity in aquatic ecosystems, leading to impairment of valuable ecosystem functions and services. Domestic and industrial wastewaters represent a significant source of pollution to the aquatic environment due to inadequate or incomplete removal of chemicals introduced into waters by human activities. Currently, incomplete chemical characterization of treated wastewaters limits comprehensive risk assessment of this ubiquitous impact to water. In particular, a significant fraction of the organic chemical composition of treated industrial and domestic wastewaters remains uncharacterized at the molecular level. Efforts aimed at reducing the impacts of water pollution on aquatic ecosystems critically require knowledge of the composition of wastewaters to develop interventions capable of protecting our precious natural water resources.
The goal of this dissertation was to develop a robust, extensible and high-throughput framework for the comprehensive characterization of organic micropollutants in wastewaters by high-resolution accurate-mass mass spectrometry. High-resolution mass spectrometry provides the most powerful analytical technique available for assessing the occurrence and fate of organic pollutants in the water cycle. However, significant limitations in data processing, analysis and interpretation have limited this technique in achieving comprehensive characterization of organic pollutants occurring in natural and built environments. My work aimed to address these challenges by development of automated workflows for the structural characterization of organic pollutants in wastewater and wastewater impacted environments by high-resolution mass spectrometry, and to apply these methods in combination with novel data handling routines to conduct detailed fate studies of wastewater-derived organic micropollutants in the aquatic environment.
In Chapter 2, chemoinformatic tools were implemented along with novel non-targeted mass spectrometric analytical methods to characterize, map, and explore an environmentally-relevant “chemical space” in municipal wastewater. This was accomplished by characterizing the molecular composition of known wastewater-derived organic pollutants and substances that are prioritized as potential wastewater contaminants, using these databases to evaluate the pollutant-likeness of structures postulated for unknown organic compounds that I detected in wastewater extracts using high-resolution mass spectrometry approaches. Results showed that application of multiple computational mass spectrometric tools to structural elucidation of unknown organic pollutants arising in wastewaters improved the efficiency and veracity of screening approaches based on high-resolution mass spectrometry. Furthermore, structural similarity searching was essential for prioritizing substances sharing structural features with known organic pollutants or industrial and consumer chemicals that could enter the environment through use or disposal.
I then applied this comprehensive methodological and computational non-targeted analysis workflow to micropollutant fate analysis in domestic wastewaters (Chapter 3), surface waters impacted by water reuse activities (Chapter 4) and effluents of wastewater treatment facilities receiving wastewater from oil and gas extraction activities (Chapter 5). In Chapter 3, I showed that application of chemometric tools aided in the prioritization of non-targeted compounds arising at various stages of conventional wastewater treatment by partitioning high dimensional data into rational chemical categories based on knowledge of organic chemical fate processes, resulting in the classification of organic micropollutants based on their occurrence and/or removal during treatment. Similarly, in Chapter 4, high-resolution sampling and broad-spectrum targeted and non-targeted chemical analysis were applied to assess the occurrence and fate of organic micropollutants in a water reuse application, wherein reclaimed wastewater was applied for irrigation of turf grass. Results showed that organic micropollutant composition of surface waters receiving runoff from wastewater irrigated areas appeared to be minimally impacted by wastewater-derived organic micropollutants. Finally, Chapter 5 presents results of the comprehensive organic chemical composition of oil and gas wastewaters treated for surface water discharge. Concurrent analysis of effluent samples by complementary, broad-spectrum analytical techniques, revealed that low-levels of hydrophobic organic contaminants, but elevated concentrations of polymeric surfactants, which may effect the fate and analysis of contaminants of concern in oil and gas wastewaters.
Taken together, my work represents significant progress in the characterization of polar organic chemical pollutants associated with wastewater-impacted environments by high-resolution mass spectrometry. Application of these comprehensive methods to examine micropollutant fate processes in wastewater treatment systems, water reuse environments, and water applications in oil/gas exploration yielded new insights into the factors that influence transport, transformation, and persistence of organic micropollutants in these systems across an unprecedented breadth of chemical space.
Resumo:
We investigate the applicability of the present-value asset pricing model to fishing quota markets by applying instrumental variable panel data estimation techniques to 15 years of market transactions from New Zealand's individual transferable quota (ITQ) market. In addition to the influence of current fishing rents, we explore the effect of market interest rates, risk, and expected changes in future rents on quota asset prices. The results indicate that quota asset prices are positively related to declines in interest rates, lower levels of risk, expected increases in future fish prices, and expected cost reductions from rationalization under the quota system. © 2007 American Agricultural Economics Association.
Resumo:
The ability for the citizens of a nation to determine their own representation has long been regarded as one of the most critical objectives of any electoral system. Without having the assurance of equality in representation, the fundamental nature and operation of the political system is severely undermined. Given the centuries of institutional reforms and population changes in the American system, Congressional Redistricting stands as an institution whereby this promise of effective representation can either be fulfilled or denied. The broad set of processes that encapsulate Congres- sional Redistricting have been discussed, experimented, and modified to achieve clear objectives and have long been understood to be important. Questions remain about how the dynamics which link all of these processes operate and what impact the real- ities of Congressional Redistricting hold for representation in the American system. This dissertation examines three aspects of how Congressional Redistricting in the Untied States operates in accordance with the principle of “One Person, One Vote.” By utilizing data and data analysis techniques of Geographic Information Systems (GIS), this dissertation seeks to address how Congressional Redistricting impacts the principle of one person, one vote from the standpoint of legislator accountability, redistricting institutions, and the promise of effective minority representation.
Resumo:
In recent years, most low and middle-income countries, have adopted different approaches to universal health coverage (UHC), to ensure equity and financial risk protection in accessing essential healthcare services. UHC-related policies and delivery strategies are largely based on existing healthcare systems, a result of gradual development (based on local factors and priorities). Most countries have emphasized on health financing, and human resources for health (HRH) reform policies, based on good practices of several healthcare plans to deliver UHC for their population.
Health financing and labor market frameworks were used, to understand health financing, HRH dynamics, and to analyze key health policies implemented over the past decade in Kenya’s effort to achieve UHC. Through the understanding, policy options are proposed to Kenya; analyzing, and generating lessons from health financing, and HRH reforms experiences in China. Data was collected using mixed methods approach, utilizing both quantitative (documents and literature review), and qualitative (in-depth interviews) data collection techniques.
The problems in Kenya are substantial: high levels of out-of-pocket health expenditure, slow progress in expanding health insurance among informal sector workers, inefficiencies in pulling of health are revenues, inadequate deployed HRH, maldistribution of HRH, and inadequate quality measures in training health worker. The government has identified the critical role of strengthening primary health care and the National Hospital Insurance Fund (NHIF) in Kenya’s move towards UHC. Strengthening primary health care requires; re-defining the role of hospitals, and health insurance schemes, and training, deploying and retaining primary care professionals according to the health needs of the population; concepts not emphasized in Kenya’s healthcare reforms or programs design. Kenya’s top leadership commitment is urgently needed for tougher reforms implementation, and important lessons from China’s extensive health reforms in the past decade are beneficial. Key lessons from China include health insurance expansion through rigorous research, monitoring, and evaluation, substantially increasing government health expenditure, innovative primary healthcare strengthening, designing, and implementing health policy reforms that are responsive to the population, and regional approaches to strengthening HRH.