4 resultados para overall dynamic body acceleration (ODBA)

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2014, Springer-Verlag Berlin Heidelberg.The frequency and severity of extreme events are tightly associated with the variance of precipitation. As climate warms, the acceleration in hydrological cycle is likely to enhance the variance of precipitation across the globe. However, due to the lack of an effective analysis method, the mechanisms responsible for the changes of precipitation variance are poorly understood, especially on regional scales. Our study fills this gap by formulating a variance partition algorithm, which explicitly quantifies the contributions of atmospheric thermodynamics (specific humidity) and dynamics (wind) to the changes in regional-scale precipitation variance. Taking Southeastern (SE) United States (US) summer precipitation as an example, the algorithm is applied to the simulations of current and future climate by phase 5 of Coupled Model Intercomparison Project (CMIP5) models. The analysis suggests that compared to observations, most CMIP5 models (~60 %) tend to underestimate the summer precipitation variance over the SE US during the 1950–1999, primarily due to the errors in the modeled dynamic processes (i.e. large-scale circulation). Among the 18 CMIP5 models analyzed in this study, six of them reasonably simulate SE US summer precipitation variance in the twentieth century and the underlying physical processes; these models are thus applied for mechanistic study of future changes in SE US summer precipitation variance. In the future, the six models collectively project an intensification of SE US summer precipitation variance, resulting from the combined effects of atmospheric thermodynamics and dynamics. Between them, the latter plays a more important role. Specifically, thermodynamics results in more frequent and intensified wet summers, but does not contribute to the projected increase in the frequency and intensity of dry summers. In contrast, atmospheric dynamics explains the projected enhancement in both wet and dry summers, indicating its importance in understanding future climate change over the SE US. The results suggest that the intensified SE US summer precipitation variance is not a purely thermodynamic response to greenhouse gases forcing, and cannot be explained without the contribution of atmospheric dynamics. Our analysis provides important insights to understand the mechanisms of SE US summer precipitation variance change. The algorithm formulated in this study can be easily applied to other regions and seasons to systematically explore the mechanisms responsible for the changes in precipitation extremes in a warming climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract

The goal of modern radiotherapy is to precisely deliver a prescribed radiation dose to delineated target volumes that contain a significant amount of tumor cells while sparing the surrounding healthy tissues/organs. Precise delineation of treatment and avoidance volumes is the key for the precision radiation therapy. In recent years, considerable clinical and research efforts have been devoted to integrate MRI into radiotherapy workflow motivated by the superior soft tissue contrast and functional imaging possibility. Dynamic contrast-enhanced MRI (DCE-MRI) is a noninvasive technique that measures properties of tissue microvasculature. Its sensitivity to radiation-induced vascular pharmacokinetic (PK) changes has been preliminary demonstrated. In spite of its great potential, two major challenges have limited DCE-MRI’s clinical application in radiotherapy assessment: the technical limitations of accurate DCE-MRI imaging implementation and the need of novel DCE-MRI data analysis methods for richer functional heterogeneity information.

This study aims at improving current DCE-MRI techniques and developing new DCE-MRI analysis methods for particular radiotherapy assessment. Thus, the study is naturally divided into two parts. The first part focuses on DCE-MRI temporal resolution as one of the key DCE-MRI technical factors, and some improvements regarding DCE-MRI temporal resolution are proposed; the second part explores the potential value of image heterogeneity analysis and multiple PK model combination for therapeutic response assessment, and several novel DCE-MRI data analysis methods are developed.

I. Improvement of DCE-MRI temporal resolution. First, the feasibility of improving DCE-MRI temporal resolution via image undersampling was studied. Specifically, a novel MR image iterative reconstruction algorithm was studied for DCE-MRI reconstruction. This algorithm was built on the recently developed compress sensing (CS) theory. By utilizing a limited k-space acquisition with shorter imaging time, images can be reconstructed in an iterative fashion under the regularization of a newly proposed total generalized variation (TGV) penalty term. In the retrospective study of brain radiosurgery patient DCE-MRI scans under IRB-approval, the clinically obtained image data was selected as reference data, and the simulated accelerated k-space acquisition was generated via undersampling the reference image full k-space with designed sampling grids. Two undersampling strategies were proposed: 1) a radial multi-ray grid with a special angular distribution was adopted to sample each slice of the full k-space; 2) a Cartesian random sampling grid series with spatiotemporal constraints from adjacent frames was adopted to sample the dynamic k-space series at a slice location. Two sets of PK parameters’ maps were generated from the undersampled data and from the fully-sampled data, respectively. Multiple quantitative measurements and statistical studies were performed to evaluate the accuracy of PK maps generated from the undersampled data in reference to the PK maps generated from the fully-sampled data. Results showed that at a simulated acceleration factor of four, PK maps could be faithfully calculated from the DCE images that were reconstructed using undersampled data, and no statistically significant differences were found between the regional PK mean values from undersampled and fully-sampled data sets. DCE-MRI acceleration using the investigated image reconstruction method has been suggested as feasible and promising.

Second, for high temporal resolution DCE-MRI, a new PK model fitting method was developed to solve PK parameters for better calculation accuracy and efficiency. This method is based on a derivative-based deformation of the commonly used Tofts PK model, which is presented as an integrative expression. This method also includes an advanced Kolmogorov-Zurbenko (KZ) filter to remove the potential noise effect in data and solve the PK parameter as a linear problem in matrix format. In the computer simulation study, PK parameters representing typical intracranial values were selected as references to simulated DCE-MRI data for different temporal resolution and different data noise level. Results showed that at both high temporal resolutions (<1s) and clinically feasible temporal resolution (~5s), this new method was able to calculate PK parameters more accurate than the current calculation methods at clinically relevant noise levels; at high temporal resolutions, the calculation efficiency of this new method was superior to current methods in an order of 102. In a retrospective of clinical brain DCE-MRI scans, the PK maps derived from the proposed method were comparable with the results from current methods. Based on these results, it can be concluded that this new method can be used for accurate and efficient PK model fitting for high temporal resolution DCE-MRI.

II. Development of DCE-MRI analysis methods for therapeutic response assessment. This part aims at methodology developments in two approaches. The first one is to develop model-free analysis method for DCE-MRI functional heterogeneity evaluation. This approach is inspired by the rationale that radiotherapy-induced functional change could be heterogeneous across the treatment area. The first effort was spent on a translational investigation of classic fractal dimension theory for DCE-MRI therapeutic response assessment. In a small-animal anti-angiogenesis drug therapy experiment, the randomly assigned treatment/control groups received multiple fraction treatments with one pre-treatment and multiple post-treatment high spatiotemporal DCE-MRI scans. In the post-treatment scan two weeks after the start, the investigated Rényi dimensions of the classic PK rate constant map demonstrated significant differences between the treatment and the control groups; when Rényi dimensions were adopted for treatment/control group classification, the achieved accuracy was higher than the accuracy from using conventional PK parameter statistics. Following this pilot work, two novel texture analysis methods were proposed. First, a new technique called Gray Level Local Power Matrix (GLLPM) was developed. It intends to solve the lack of temporal information and poor calculation efficiency of the commonly used Gray Level Co-Occurrence Matrix (GLCOM) techniques. In the same small animal experiment, the dynamic curves of Haralick texture features derived from the GLLPM had an overall better performance than the corresponding curves derived from current GLCOM techniques in treatment/control separation and classification. The second developed method is dynamic Fractal Signature Dissimilarity (FSD) analysis. Inspired by the classic fractal dimension theory, this method measures the dynamics of tumor heterogeneity during the contrast agent uptake in a quantitative fashion on DCE images. In the small animal experiment mentioned before, the selected parameters from dynamic FSD analysis showed significant differences between treatment/control groups as early as after 1 treatment fraction; in contrast, metrics from conventional PK analysis showed significant differences only after 3 treatment fractions. When using dynamic FSD parameters, the treatment/control group classification after 1st treatment fraction was improved than using conventional PK statistics. These results suggest the promising application of this novel method for capturing early therapeutic response.

The second approach of developing novel DCE-MRI methods is to combine PK information from multiple PK models. Currently, the classic Tofts model or its alternative version has been widely adopted for DCE-MRI analysis as a gold-standard approach for therapeutic response assessment. Previously, a shutter-speed (SS) model was proposed to incorporate transcytolemmal water exchange effect into contrast agent concentration quantification. In spite of richer biological assumption, its application in therapeutic response assessment is limited. It might be intriguing to combine the information from the SS model and from the classic Tofts model to explore potential new biological information for treatment assessment. The feasibility of this idea was investigated in the same small animal experiment. The SS model was compared against the Tofts model for therapeutic response assessment using PK parameter regional mean value comparison. Based on the modeled transcytolemmal water exchange rate, a biological subvolume was proposed and was automatically identified using histogram analysis. Within the biological subvolume, the PK rate constant derived from the SS model were proved to be superior to the one from Tofts model in treatment/control separation and classification. Furthermore, novel biomarkers were designed to integrate PK rate constants from these two models. When being evaluated in the biological subvolume, this biomarker was able to reflect significant treatment/control difference in both post-treatment evaluation. These results confirm the potential value of SS model as well as its combination with Tofts model for therapeutic response assessment.

In summary, this study addressed two problems of DCE-MRI application in radiotherapy assessment. In the first part, a method of accelerating DCE-MRI acquisition for better temporal resolution was investigated, and a novel PK model fitting algorithm was proposed for high temporal resolution DCE-MRI. In the second part, two model-free texture analysis methods and a multiple-model analysis method were developed for DCE-MRI therapeutic response assessment. The presented works could benefit the future DCE-MRI routine clinical application in radiotherapy assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To use a unique multicomponent administrative data set assembled at a large academic teaching hospital to examine the risk of percutaneous blood and body fluid (BBF) exposures occurring in operating rooms. DESIGN A 10-year retrospective cohort design. SETTING A single large academic teaching hospital. PARTICIPANTS All surgical procedures (n=333,073) performed in 2001-2010 as well as 2,113 reported BBF exposures were analyzed. METHODS Crude exposure rates were calculated; Poisson regression was used to analyze risk factors and account for procedure duration. BBF exposures involving suture needles were examined separately from those involving other device types to examine possible differences in risk factors. RESULTS The overall rate of reported BBF exposures was 6.3 per 1,000 surgical procedures (2.9 per 1,000 surgical hours). BBF exposure rates increased with estimated patient blood loss (17.7 exposures per 1,000 procedures with 501-1,000 cc blood loss and 26.4 exposures per 1,000 procedures with >1,000 cc blood loss), number of personnel working in the surgical field during the procedure (34.4 exposures per 1,000 procedures having ≥15 personnel ever in the field), and procedure duration (14.3 exposures per 1,000 procedures lasting 4 to <6 hours, 27.1 exposures per 1,000 procedures lasting ≥6 hours). Regression results showed associations were generally stronger for suture needle-related exposures. CONCLUSIONS Results largely support other studies found in the literature. However, additional research should investigate differences in risk factors for BBF exposures associated with suture needles and those associated with all other device types. Infect. Control Hosp. Epidemiol. 2015;37(1):80-87.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How do infants learn word meanings? Research has established the impact of both parent and child behaviors on vocabulary development, however the processes and mechanisms underlying these relationships are still not fully understood. Much existing literature focuses on direct paths to word learning, demonstrating that parent speech and child gesture use are powerful predictors of later vocabulary. However, an additional body of research indicates that these relationships don’t always replicate, particularly when assessed in different populations, contexts, or developmental periods.

The current study examines the relationships between infant gesture, parent speech, and infant vocabulary over the course of the second year (10-22 months of age). Through the use of detailed coding of dyadic mother-child play interactions and a combination of quantitative and qualitative data analytic methods, the process of communicative development was explored. Findings reveal non-linear patterns of growth in both parent speech content and child gesture use. Analyses of contingency in dyadic interactions reveal that children are active contributors to communicative engagement through their use of gestures, shaping the type of input they receive from parents, which in turn influences child vocabulary acquisition. Recommendations for future studies and the use of nuanced methodologies to assess changes in the dynamic system of dyadic communication are discussed.