3 resultados para over budget causes
em Duke University
Resumo:
A female patient, with normal familial history, developed at the age of 30 months an episode of diarrhoea, vomiting and lethargy which resolved spontaneously. At the age of 3 years, the patient re-iterated vomiting, was sub-febrile and hypoglycemic, fell into coma, developed seizures and sequels involving right hemi-body. Urinary excretion of hexanoylglycine and suberylglycine was low during this metabolic decompensation. A study of pre- and post-prandial blood glucose and ketones over a period of 24 hours showed a normal glycaemic cycle but a failure to form ketones after 12 hours fasting, suggesting a mitochondrial β-oxidation defect. Total blood carnitine was lowered with unesterified carnitine being half of the lowest control value. A diagnosis of mild MCAD deficiency (MCADD) was based on rates of 1-14C-octanoate and 9, 10-3H-myristate oxidation and of octanoyl-CoA dehydrogenase being reduced to 25% of control values. Other mitochondrial fatty acid oxidation proteins were functionally normal. De novo acylcarnitine synthesis in whole blood samples incubated with deuterated palmitate was also typical of MCADD. Genetic studies showed that the patient was compound heterozygous with a sequence variation in both of the two ACADM alleles; one had the common c.985A>G mutation and the other had a novel c.145C>G mutation. This is the first report for the ACADM gene c.145C>G mutation: it is located in exon 3 and causes a replacement of glutamine to glutamate at position 24 of the mature protein (Q24E). Associated with heterozygosity for c.985A>G mutation, this mutation is responsible for a mild MCADD phenotype along with a clinical story corroborating the emerging literature view that patients with genotypes representing mild MCADD (high residual enzyme activity and low urinary levels of glycine conjugates), similar to some of the mild MCADDs detected by MS/MS newborn screening, may be at risk for disease presentation.
Resumo:
Background: Because most developing countries lack sufficient resources and infrastructure to conduct population-based studies on childhood blindness, it can be difficult to obtain epidemiologically reliable data available for planning public health strategies to effectively address the major determinants of childhood blindness. The major etiologies of blindness can differ regionally and intra-regionally. The objective of this retrospective study was to determine (1) the major causes of childhood blindness (BL) and severe visual impairment (SVI) in students who attend Wa Methodist School for the Blind in Upper West Region, North Ghana, and (2) any potential temporal trends in the causes of blindness for this region.
Methods: In this retrospective study, demographic data and clinical information from an eye screening at Wa Methodist School for the Blind were coded according to the World Health Organization/Prevention of Blindness standardized reporting methodology. Causes of BL and SVI were categorized anatomically and etiologically. We determined the major causes of BL/SVI over time using information provided about the age at onset of visual loss for each student.
Results: The major anatomical causes of BL/SVI among the 190 students screened were corneal opacity and phthisis bulbi (n=28, 15%), optic atrophy (n=23, 13%), glaucoma (n=18, 9%), microphthalmos (n=18, 9%), and cataract (n=18, 9%). Within the first year of life, students became blind mainly due to whole globe causes (n=23, 26%), cataract (n=15, 17%), and optic atrophy (n=11, 13%). Those who became blind after age one year had whole globe causes (n=26, 26%), corneal opacity (n=24, 24%), and optic atrophy (n=13, 13%).
Conclusion: At the Wa Methodist School for the Blind, the major anatomical causes of BL/SVI were corneal opacity and phthisis bulbi. About half of all students became blind within the first year of life, and were disproportionately affected by cataract and retinal causes in comparison to the other students who became blind after age one year. While research in blind schools has a number of implicit disadvantages and limitations, considering the temporal trends and other epidemiological factors of blindness may increase the usefulness and/or implications of the data that come from blind school studies in order to improve screening methods for newborns in hospitals and primary care centers, and to help tailor preventative and treatment programs to reduce avoidable childhood blindness in neonates and schoolchildren.
Resumo:
Acute exposures to some individual polycyclic aromatic hydrocarbons (PAHs) and complex PAH mixtures are known to cause cardiac malformations and edema in the developing fish embryo. However, the heart is not the only organ impacted by developmental PAH exposure. The developing brain is also affected, resulting in lasting behavioral dysfunction. While acute exposures to some PAHs are teratogenically lethal in fish, little is known about the later life consequences of early life, lower dose subteratogenic PAH exposures. We sought to determine and characterize the long-term behavioral consequences of subteratogenic developmental PAH mixture exposure in both naive killifish and PAH-adapted killifish using sediment pore water derived from the Atlantic Wood Industries Superfund Site. Killifish offspring were embryonically treated with two low-level PAH mixture dilutions of Elizabeth River sediment extract (ERSE) (TPAH 5.04 μg/L and 50.4 μg/L) at 24h post fertilization. Following exposure, killifish were raised to larval, juvenile, and adult life stages and subjected to a series of behavioral tests including: a locomotor activity test (4 days post-hatch), a sensorimotor response tap/habituation test (3 months post hatch), and a novel tank diving and exploration test (3months post hatch). Killifish were also monitored for survival at 1, 2, and 5 months over 5-month rearing period. Developmental PAH exposure caused short-term as well as persistent behavioral impairments in naive killifish. In contrast, the PAH-adapted killifish did not show behavioral alterations following PAH exposure. PAH mixture exposure caused increased mortality in reference killifish over time; yet, the PAH-adapted killifish, while demonstrating long-term rearing mortality, had no significant changes in mortality associated with ERSE exposure. This study demonstrated that early embryonic exposure to PAH-contaminated sediment pore water caused long-term locomotor and behavioral alterations in killifish, and that locomotor alterations could be observed in early larval stages. Additionally, our study highlights the resistance to behavioral alterations caused by low-level PAH mixture exposure in the adapted killifish population. Furthermore, this is the first longitudinal behavioral study to use killifish, an environmentally important estuarine teleost fish, and this testing framework can be used for future contaminant assessment.