1 resultado para ordered vector spaces
em Duke University
Filtro por publicador
- Aberdeen University (1)
 - Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
 - AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
 - AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
 - ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
 - Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
 - Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (77)
 - BORIS: Bern Open Repository and Information System - Berna - Suiça (5)
 - Brock University, Canada (11)
 - Bulgarian Digital Mathematics Library at IMI-BAS (12)
 - CentAUR: Central Archive University of Reading - UK (119)
 - Cochin University of Science & Technology (CUSAT), India (15)
 - Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (89)
 - Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
 - Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
 - CUNY Academic Works (3)
 - Dalarna University College Electronic Archive (6)
 - Department of Computer Science E-Repository - King's College London, Strand, London (4)
 - Digital Archives@Colby (3)
 - Diposit Digital de la UB - Universidade de Barcelona (3)
 - Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (12)
 - Duke University (1)
 - Institute of Public Health in Ireland, Ireland (2)
 - Institutional Repository of Leibniz University Hannover (1)
 - Instituto Politécnico do Porto, Portugal (9)
 - Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
 - Martin Luther Universitat Halle Wittenberg, Germany (6)
 - Massachusetts Institute of Technology (14)
 - Ministerio de Cultura, Spain (5)
 - National Center for Biotechnology Information - NCBI (2)
 - Open University Netherlands (1)
 - QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
 - ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
 - Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
 - Repositório da Produção Científica e Intelectual da Unicamp (2)
 - Repositório digital da Fundação Getúlio Vargas - FGV (8)
 - Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
 - Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (16)
 - RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (9)
 - School of Medicine, Washington University, United States (3)
 - Scielo Saúde Pública - SP (151)
 - Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (7)
 - Universidad Autónoma de Nuevo León, Mexico (13)
 - Universidad de Alicante (1)
 - Universidad del Rosario, Colombia (2)
 - Universidad Politécnica de Madrid (1)
 - Universidade Complutense de Madrid (1)
 - Universidade do Minho (8)
 - Universidade Federal do Rio Grande do Norte (UFRN) (1)
 - Universitat de Girona, Spain (4)
 - Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
 - Université de Lausanne, Switzerland (66)
 - Université de Montréal, Canada (14)
 - University of Michigan (1)
 - University of Queensland eSpace - Australia (71)
 - University of Southampton, United Kingdom (13)
 
                                
Resumo:
The central idea of this dissertation is to interpret certain invariants constructed from Laplace spectral data on a compact Riemannian manifold as regularized integrals of closed differential forms on the space of Riemannian metrics, or more generally on a space of metrics on a vector bundle. We apply this idea to both the Ray-Singer analytic torsion
and the eta invariant, explaining their dependence on the metric used to define them with a Stokes' theorem argument. We also introduce analytic multi-torsion, a generalization of analytic torsion, in the context of certain manifolds with local product structure; we prove that it is metric independent in a suitable sense.