2 resultados para occupation
em Duke University
Resumo:
A representative sample of older Danes were interviewed about experiences from the German occupation of Denmark in World War II. The number of participants with flashbulb memories for the German invasion (1940) and capitulation (1945) increased with participants' age at the time of the events up to age 8. Among participants under 8 years at the time of their most traumatic event, age at the time correlated positively with the current level of posttraumatic stress reactions and the vividness of stressful memories and their centrality to life story and identity. These findings were replicated in Study 2 for self-nominated stressful events sampled from the entire life span using a representative sample of Danes born after 1945. The results are discussed in relation to posttraumatic stress disorder and childhood amnesia.
Resumo:
We developed a high-throughput yeast-based assay to screen for chemical inhibitors of Ca(2+)/calmodulin-dependent kinase pathways. After screening two small libraries, we identified the novel antagonist 125-C9, a substituted ethyleneamine. In vitro kinase assays confirmed that 125-C9 inhibited several calmodulin-dependent kinases (CaMKs) competitively with Ca(2+)/calmodulin (Ca(2+)/CaM). This suggested that 125-C9 acted as an antagonist for Ca(2+)/CaM rather than for CaMKs. We confirmed this hypothesis by showing that 125-C9 binds directly to Ca(2+)/CaM using isothermal titration calorimetry. We further characterized binding of 125-C9 to Ca(2+)/CaM and compared its properties with those of two well-studied CaM antagonists: trifluoperazine (TFP) and W-13. Isothermal titration calorimetry revealed that binding of 125-C9 to CaM is absolutely Ca(2+)-dependent, likely occurs with a stoichiometry of five 125-C9 molecules to one CaM molecule, and involves an exchange of two protons at pH 7.0. Binding of 125-C9 is driven overall by entropy and appears to be competitive with TFP and W-13, which is consistent with occupation of similar binding sites. To test the effects of 125-C9 in living cells, we evaluated mitogen-stimulated re-entry of quiescent cells into proliferation and found similar, although slightly better, levels of inhibition by 125-C9 than by TFP and W-13. Our results not only define a novel Ca(2+)/CaM inhibitor but also reveal that chemically unique CaM antagonists can bind CaM by distinct mechanisms but similarly inhibit cellular actions of CaM.