2 resultados para n (hydroxyethyl)valine

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isoleucine and valine biosynthetic enzyme acetolactate synthase (Ilv2p) is an attractive antifungal drug target, since the isoleucine and valine biosynthetic pathway is not present in mammals, Saccharomyces cerevisiae ilv2Delta mutants do not survive in vivo, Cryptococcus neoformans ilv2 mutants are avirulent, and both S. cerevisiae and Cr. neoformans ilv2 mutants die upon isoleucine and valine starvation. To further explore the potential of Ilv2p as an antifungal drug target, we disrupted Candida albicans ILV2, and demonstrated that Ca. albicans ilv2Delta mutants were significantly attenuated in virulence, and were also profoundly starvation-cidal, with a greater than 100-fold reduction in viability after only 4 h of isoleucine and valine starvation. As fungicidal starvation would be advantageous for drug design, we explored the basis of the starvation-cidal phenotype in both S. cerevisiae and Ca. albicans ilv2Delta mutants. Since the mutation of ILV1, required for the first step of isoleucine biosynthesis, did not suppress the ilv2Delta starvation-cidal defects in either species, the cidal phenotype was not due to alpha-ketobutyrate accumulation. We found that starvation for isoleucine alone was more deleterious in Ca. albicans than in S. cerevisiae, and starvation for valine was more deleterious than for isoleucine in both species. Interestingly, while the target of rapamycin (TOR) pathway inhibitor rapamycin further reduced S. cerevisiae ilv2Delta starvation viability, it increased Ca. albicans ilv1Delta and ilv2Delta viability. Furthermore, the recovery from starvation was dependent on the carbon source present during recovery for S. cerevisiae ilv2Delta mutants, reminiscent of isoleucine and valine starvation inducing a viable but non-culturable-like state in this species, while Ca. albicans ilv1Delta and ilv2 Delta viability was influenced by the carbon source present during starvation, supporting a role for glucose wasting in the Ca. albicans cidal phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Fluid resuscitation is a cornerstone of intensive care treatment, yet there is a lack of agreement on how various types of fluids should be used in critically ill patients with different disease states. Therefore, our goal was to investigate the practice patterns of fluid utilization for resuscitation of adult patients in intensive care units (ICUs) within the USA. METHODS: We conducted a cross-sectional online survey of 502 physicians practicing in medical and surgical ICUs. Survey questions were designed to assess clinical decision-making processes for 3 types of patients who need volume expansion: (1) not bleeding and not septic, (2) bleeding but not septic, (3) requiring resuscitation for sepsis. First-choice fluid used in fluid boluses for these 3 patient types was requested from the respondents. Descriptive statistics were performed using a Kruskal-Wallis test to evaluate differences among the physician groups. Follow-up tests, including t tests, were conducted to evaluate differences between ICU types, hospital settings, and bolus volume. RESULTS: Fluid resuscitation varied with respect to preferences for the factors to determine volume status and preferences for fluid types. The 3 most frequently preferred volume indicators were blood pressure, urine output, and central venous pressure. Regardless of the patient type, the most preferred fluid type was crystalloid, followed by 5 % albumin and then 6 % hydroxyethyl starches (HES) 450/0.70 and 6 % HES 600/0.75. Surprisingly, up to 10 % of physicians still chose HES as the first choice of fluid for resuscitation in sepsis. The clinical specialty and the practice setting of the treating physicians also influenced fluid choices. CONCLUSIONS: Practice patterns of fluid resuscitation varied in the USA, depending on patient characteristics, clinical specialties, and practice settings of the treating physicians.