4 resultados para multi-stage fixed costs
em Duke University
Resumo:
Patents for several blockbuster biological products are expected to expire soon. The Food and Drug Administration is examining whether biologies can and should be treated like pharmaceuticals with regard to generics. In contrast with pharmaceuticals, which are manufactured through chemical synthesis, biologies are manufactured through fermentation, a process that is more variable and costly. Regulators might require extensive clinical testing of generic biologies to demonstrate equivalence to the branded product. The focus of the debate on generic biologies has been on legal and health concerns, but there are important economic implications. We combine a theoretical model of generic biologies with regression estimates from generic pharmaceuticals to estimate market entry and prices in the generic biologic market. We find that generic biologies will have high fixed costs from clinical testing and from manufacturing, so there will be less entry than would be expected for generic pharmaceuticals. With fewer generic competitors, generic biologies will be relatively close in price to branded biologies. Policy makers should be prudent in estimating financial benefits of generic biologies for consumers and payers. We also examine possible government strategies to promote generic competition. Copyright © 2007 John Wiley & Sons, Ltd.
Resumo:
In order to develop a strategic plan that will guide their priorities and resource allocation for 2018-2021, North Carolina Sea Grant has implemented a multi-stage process designed to increase stakeholder engagement and to better assess and serve the coastal priorities of North Carolinians. This project explores strengths and potential areas for improvement within NC Sea Grant’s planning process with a specific focus on maximizing stakeholder engagement. By interviewing staff, observing focus groups, and creating a survey instrument for public distribution, we developed a set of recommendations highlighting the ways that NC Sea Grant can better facilitate inclusion of stakeholder, public, and staff input in its strategic planning process, such as holding some stakeholder events outside of typical business hours and discussing ways to incorporate diversity into the strategic plan.
Resumo:
In some supply chains, materials are ordered periodically according to local information. This paper investigates how to improve the performance of such a supply chain. Specifically, we consider a serial inventory system in which each stage implements a local reorder interval policy; i.e., each stage orders up to a local basestock level according to a fixed-interval schedule. A fixed cost is incurred for placing an order. Two improvement strategies are considered: (1) expanding the information flow by acquiring real-time demand information and (2) accelerating the material flow via flexible deliveries. The first strategy leads to a reorder interval policy with full information; the second strategy leads to a reorder point policy with local information. Both policies have been studied in the literature. Thus, to assess the benefit of these strategies, we analyze the local reorder interval policy. We develop a bottom-up recursion to evaluate the system cost and provide a method to obtain the optimal policy. A numerical study shows the following: Increasing the flexibility of deliveries lowers costs more than does expanding information flow; the fixed order costs and the system lead times are key drivers that determine the effectiveness of these improvement strategies. In addition, we find that using optimal batch sizes in the reorder point policy and demand rate to infer reorder intervals may lead to significant cost inefficiency. © 2010 INFORMS.
Resumo:
To maintain a strict balance between demand and supply in the US power systems, the Independent System Operators (ISOs) schedule power plants and determine electricity prices using a market clearing model. This model determines for each time period and power plant, the times of startup, shutdown, the amount of power production, and the provisioning of spinning and non-spinning power generation reserves, etc. Such a deterministic optimization model takes as input the characteristics of all the generating units such as their power generation installed capacity, ramp rates, minimum up and down time requirements, and marginal costs for production, as well as the forecast of intermittent energy such as wind and solar, along with the minimum reserve requirement of the whole system. This reserve requirement is determined based on the likelihood of outages on the supply side and on the levels of error forecasts in demand and intermittent generation. With increased installed capacity of intermittent renewable energy, determining the appropriate level of reserve requirements has become harder. Stochastic market clearing models have been proposed as an alternative to deterministic market clearing models. Rather than using a fixed reserve targets as an input, stochastic market clearing models take different scenarios of wind power into consideration and determine reserves schedule as output. Using a scaled version of the power generation system of PJM, a regional transmission organization (RTO) that coordinates the movement of wholesale electricity in all or parts of 13 states and the District of Columbia, and wind scenarios generated from BPA (Bonneville Power Administration) data, this paper explores a comparison of the performance between a stochastic and deterministic model in market clearing. The two models are compared in their ability to contribute to the affordability, reliability and sustainability of the electricity system, measured in terms of total operational costs, load shedding and air emissions. The process of building the models and running for tests indicate that a fair comparison is difficult to obtain due to the multi-dimensional performance metrics considered here, and the difficulty in setting up the parameters of the models in a way that does not advantage or disadvantage one modeling framework. Along these lines, this study explores the effect that model assumptions such as reserve requirements, value of lost load (VOLL) and wind spillage costs have on the comparison of the performance of stochastic vs deterministic market clearing models.