4 resultados para multi-scale modelling
em Duke University
Resumo:
RNA viruses are an important cause of global morbidity and mortality. The rapid evolutionary rates of RNA virus pathogens, caused by high replication rates and error-prone polymerases, can make the pathogens difficult to control. RNA viruses can undergo immune escape within their hosts and develop resistance to the treatment and vaccines we design to fight them. Understanding the spread and evolution of RNA pathogens is essential for reducing human suffering. In this dissertation, I make use of the rapid evolutionary rate of viral pathogens to answer several questions about how RNA viruses spread and evolve. To address each of the questions, I link mathematical techniques for modeling viral population dynamics with phylogenetic and coalescent techniques for analyzing and modeling viral genetic sequences and evolution. The first project uses multi-scale mechanistic modeling to show that decreases in viral substitution rates over the course of an acute infection, combined with the timing of infectious hosts transmitting new infections to susceptible individuals, can account for discrepancies in viral substitution rates in different host populations. The second project combines coalescent models with within-host mathematical models to identify driving evolutionary forces in chronic hepatitis C virus infection. The third project compares the effects of intrinsic and extrinsic viral transmission rate variation on viral phylogenies.
Resumo:
BACKGROUND: Computer simulations are of increasing importance in modeling biological phenomena. Their purpose is to predict behavior and guide future experiments. The aim of this project is to model the early immune response to vaccination by an agent based immune response simulation that incorporates realistic biophysics and intracellular dynamics, and which is sufficiently flexible to accurately model the multi-scale nature and complexity of the immune system, while maintaining the high performance critical to scientific computing. RESULTS: The Multiscale Systems Immunology (MSI) simulation framework is an object-oriented, modular simulation framework written in C++ and Python. The software implements a modular design that allows for flexible configuration of components and initialization of parameters, thus allowing simulations to be run that model processes occurring over different temporal and spatial scales. CONCLUSION: MSI addresses the need for a flexible and high-performing agent based model of the immune system.
Resumo:
A visually apparent but scientifically untested outcome of land-use change is homogenization across urban areas, where neighborhoods in different parts of the country have similar patterns of roads, residential lots, commercial areas, and aquatic features. We hypothesize that this homogenization extends to ecological structure and also to ecosystem functions such as carbon dynamics and microclimate, with continental-scale implications. Further, we suggest that understanding urban homogenization will provide the basis for understanding the impacts of urban land-use change from local to continental scales. Here, we show how multi-scale, multidisciplinary datasets from six metropolitan areas that cover the major climatic regions of the US (Phoenix, AZ; Miami, FL; Baltimore, MD; Boston, MA; Minneapolis-St Paul, MN; and Los Angeles, CA) can be used to determine how household and neighborhood characteristics correlate with land-management practices, land-cover composition, and landscape structure and ecosystem functions at local, regional, and continental scales. © The Ecological Society of America.