6 resultados para multi attribute utility theory

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with life-threatening conditions sometimes appear to make risky treatment decisions as their condition declines, contradicting the risk-averse behavior predicted by expected utility theory. Prospect theory accommodates such decisions by describing how individuals evaluate outcomes relative to a reference point and how they exhibit risk-seeking behavior over losses relative to that point. The authors show that a patient's reference point for his or her health is a key factor in determining which treatment option the patient selects, and they examine under what circumstances the more risky option is selected. The authors argue that patients' reference points may take time to adjust following a change in diagnosis, with implications for predicting under what circumstances a patient may select experimental or conventional therapies or select no treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For optimal solutions in health care, decision makers inevitably must evaluate trade-offs, which call for multi-attribute valuation methods. Researchers have proposed using best-worst scaling (BWS) methods which seek to extract information from respondents by asking them to identify the best and worst items in each choice set. While a companion paper describes the different types of BWS, application and their advantages and downsides, this contribution expounds their relationships with microeconomic theory, which also have implications for statistical inference. This article devotes to the microeconomic foundations of preference measurement, also addressing issues such as scale invariance and scale heterogeneity. Furthermore the paper discusses the basics of preference measurement using rating, ranking and stated choice data in the light of the findings of the preceding section. Moreover the paper gives an introduction to the use of stated choice data and juxtaposes BWS with the microeconomic foundations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As the world population continues to grow past seven billion people and global challenges continue to persist including resource availability, biodiversity loss, climate change and human well-being, a new science is required that can address the integrated nature of these challenges and the multiple scales on which they are manifest. Sustainability science has emerged to fill this role. In the fifteen years since it was first called for in the pages of Science, it has rapidly matured, however its place in the history of science and the way it is practiced today must be continually evaluated. In Part I, two chapters address this theoretical and practical grounding. Part II transitions to the applied practice of sustainability science in addressing the urban heat island (UHI) challenge wherein the climate of urban areas are warmer than their surrounding rural environs. The UHI has become increasingly important within the study of earth sciences given the increased focus on climate change and as the balance of humans now live in urban areas.

In Chapter 2 a novel contribution to the historical context of sustainability is argued. Sustainability as a concept characterizing the relationship between humans and nature emerged in the mid to late 20th century as a response to findings used to also characterize the Anthropocene. Emerging from the human-nature relationships that came before it, evidence is provided that suggests Sustainability was enabled by technology and a reorientation of world-view and is unique in its global boundary, systematic approach and ambition for both well being and the continued availability of resources and Earth system function. Sustainability is further an ambition that has wide appeal, making it one of the first normative concepts of the Anthropocene.

Despite its widespread emergence and adoption, sustainability science continues to suffer from definitional ambiguity within the academe. In Chapter 3, a review of efforts to provide direction and structure to the science reveals a continuum of approaches anchored at either end by differing visions of how the science interfaces with practice (solutions). At one end, basic science of societally defined problems informs decisions about possible solutions and their application. At the other end, applied research directly affects the options available to decision makers. While clear from the literature, survey data further suggests that the dichotomy does not appear to be as apparent in the minds of practitioners.

In Chapter 4, the UHI is first addressed at the synoptic, mesoscale. Urban climate is the most immediate manifestation of the warming global climate for the majority of people on earth. Nearly half of those people live in small to medium sized cities, an understudied scale in urban climate research. Widespread characterization would be useful to decision makers in planning and design. Using a multi-method approach, the mesoscale UHI in the study region is characterized and the secular trend over the last sixty years evaluated. Under isolated ideal conditions the findings indicate a UHI of 5.3 ± 0.97 °C to be present in the study area, the magnitude of which is growing over time.

Although urban heat islands (UHI) are well studied, there remain no panaceas for local scale mitigation and adaptation methods, therefore continued attention to characterization of the phenomenon in urban centers of different scales around the globe is required. In Chapter 5, a local scale analysis of the canopy layer and surface UHI in a medium sized city in North Carolina, USA is conducted using multiple methods including stationary urban sensors, mobile transects and remote sensing. Focusing on the ideal conditions for UHI development during an anticyclonic summer heat event, the study observes a range of UHI intensity depending on the method of observation: 8.7 °C from the stationary urban sensors; 6.9 °C from mobile transects; and, 2.2 °C from remote sensing. Additional attention is paid to the diurnal dynamics of the UHI and its correlation with vegetation indices, dewpoint and albedo. Evapotranspiration is shown to drive dynamics in the study region.

Finally, recognizing that a bridge must be established between the physical science community studying the Urban Heat Island (UHI) effect, and the planning community and decision makers implementing urban form and development policies, Chapter 6 evaluates multiple urban form characterization methods. Methods evaluated include local climate zones (LCZ), national land cover database (NCLD) classes and urban cluster analysis (UCA) to determine their utility in describing the distribution of the UHI based on three standard observation types 1) fixed urban temperature sensors, 2) mobile transects and, 3) remote sensing. Bivariate, regression and ANOVA tests are used to conduct the analyses. Findings indicate that the NLCD classes are best correlated to the UHI intensity and distribution in the study area. Further, while the UCA method is not useful directly, the variables included in the method are predictive based on regression analysis so the potential for better model design exists. Land cover variables including albedo, impervious surface fraction and pervious surface fraction are found to dominate the distribution of the UHI in the study area regardless of observation method.

Chapter 7 provides a summary of findings, and offers a brief analysis of their implications for both the scientific discourse generally, and the study area specifically. In general, the work undertaken does not achieve the full ambition of sustainability science, additional work is required to translate findings to practice and more fully evaluate adoption. The implications for planning and development in the local region are addressed in the context of a major light-rail infrastructure project including several systems level considerations like human health and development. Finally, several avenues for future work are outlined. Within the theoretical development of sustainability science, these pathways include more robust evaluations of the theoretical and actual practice. Within the UHI context, these include development of an integrated urban form characterization model, application of study methodology in other geographic areas and at different scales, and use of novel experimental methods including distributed sensor networks and citizen science.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-ray computed tomography (CT) imaging constitutes one of the most widely used diagnostic tools in radiology today with nearly 85 million CT examinations performed in the U.S in 2011. CT imparts a relatively high amount of radiation dose to the patient compared to other x-ray imaging modalities and as a result of this fact, coupled with its popularity, CT is currently the single largest source of medical radiation exposure to the U.S. population. For this reason, there is a critical need to optimize CT examinations such that the dose is minimized while the quality of the CT images is not degraded. This optimization can be difficult to achieve due to the relationship between dose and image quality. All things being held equal, reducing the dose degrades image quality and can impact the diagnostic value of the CT examination.

A recent push from the medical and scientific community towards using lower doses has spawned new dose reduction technologies such as automatic exposure control (i.e., tube current modulation) and iterative reconstruction algorithms. In theory, these technologies could allow for scanning at reduced doses while maintaining the image quality of the exam at an acceptable level. Therefore, there is a scientific need to establish the dose reduction potential of these new technologies in an objective and rigorous manner. Establishing these dose reduction potentials requires precise and clinically relevant metrics of CT image quality, as well as practical and efficient methodologies to measure such metrics on real CT systems. The currently established methodologies for assessing CT image quality are not appropriate to assess modern CT scanners that have implemented those aforementioned dose reduction technologies.

Thus the purpose of this doctoral project was to develop, assess, and implement new phantoms, image quality metrics, analysis techniques, and modeling tools that are appropriate for image quality assessment of modern clinical CT systems. The project developed image quality assessment methods in the context of three distinct paradigms, (a) uniform phantoms, (b) textured phantoms, and (c) clinical images.

The work in this dissertation used the “task-based” definition of image quality. That is, image quality was broadly defined as the effectiveness by which an image can be used for its intended task. Under this definition, any assessment of image quality requires three components: (1) A well defined imaging task (e.g., detection of subtle lesions), (2) an “observer” to perform the task (e.g., a radiologists or a detection algorithm), and (3) a way to measure the observer’s performance in completing the task at hand (e.g., detection sensitivity/specificity).

First, this task-based image quality paradigm was implemented using a novel multi-sized phantom platform (with uniform background) developed specifically to assess modern CT systems (Mercury Phantom, v3.0, Duke University). A comprehensive evaluation was performed on a state-of-the-art CT system (SOMATOM Definition Force, Siemens Healthcare) in terms of noise, resolution, and detectability as a function of patient size, dose, tube energy (i.e., kVp), automatic exposure control, and reconstruction algorithm (i.e., Filtered Back-Projection– FPB vs Advanced Modeled Iterative Reconstruction– ADMIRE). A mathematical observer model (i.e., computer detection algorithm) was implemented and used as the basis of image quality comparisons. It was found that image quality increased with increasing dose and decreasing phantom size. The CT system exhibited nonlinear noise and resolution properties, especially at very low-doses, large phantom sizes, and for low-contrast objects. Objective image quality metrics generally increased with increasing dose and ADMIRE strength, and with decreasing phantom size. The ADMIRE algorithm could offer comparable image quality at reduced doses or improved image quality at the same dose (increase in detectability index by up to 163% depending on iterative strength). The use of automatic exposure control resulted in more consistent image quality with changing phantom size.

Based on those results, the dose reduction potential of ADMIRE was further assessed specifically for the task of detecting small (<=6 mm) low-contrast (<=20 HU) lesions. A new low-contrast detectability phantom (with uniform background) was designed and fabricated using a multi-material 3D printer. The phantom was imaged at multiple dose levels and images were reconstructed with FBP and ADMIRE. Human perception experiments were performed to measure the detection accuracy from FBP and ADMIRE images. It was found that ADMIRE had equivalent performance to FBP at 56% less dose.

Using the same image data as the previous study, a number of different mathematical observer models were implemented to assess which models would result in image quality metrics that best correlated with human detection performance. The models included naïve simple metrics of image quality such as contrast-to-noise ratio (CNR) and more sophisticated observer models such as the non-prewhitening matched filter observer model family and the channelized Hotelling observer model family. It was found that non-prewhitening matched filter observers and the channelized Hotelling observers both correlated strongly with human performance. Conversely, CNR was found to not correlate strongly with human performance, especially when comparing different reconstruction algorithms.

The uniform background phantoms used in the previous studies provided a good first-order approximation of image quality. However, due to their simplicity and due to the complexity of iterative reconstruction algorithms, it is possible that such phantoms are not fully adequate to assess the clinical impact of iterative algorithms because patient images obviously do not have smooth uniform backgrounds. To test this hypothesis, two textured phantoms (classified as gross texture and fine texture) and a uniform phantom of similar size were built and imaged on a SOMATOM Flash scanner (Siemens Healthcare). Images were reconstructed using FBP and a Sinogram Affirmed Iterative Reconstruction (SAFIRE). Using an image subtraction technique, quantum noise was measured in all images of each phantom. It was found that in FBP, the noise was independent of the background (textured vs uniform). However, for SAFIRE, noise increased by up to 44% in the textured phantoms compared to the uniform phantom. As a result, the noise reduction from SAFIRE was found to be up to 66% in the uniform phantom but as low as 29% in the textured phantoms. Based on this result, it clear that further investigation was needed into to understand the impact that background texture has on image quality when iterative reconstruction algorithms are used.

To further investigate this phenomenon with more realistic textures, two anthropomorphic textured phantoms were designed to mimic lung vasculature and fatty soft tissue texture. The phantoms (along with a corresponding uniform phantom) were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Scans were repeated a total of 50 times in order to get ensemble statistics of the noise. A novel method of estimating the noise power spectrum (NPS) from irregularly shaped ROIs was developed. It was found that SAFIRE images had highly locally non-stationary noise patterns with pixels near edges having higher noise than pixels in more uniform regions. Compared to FBP, SAFIRE images had 60% less noise on average in uniform regions for edge pixels, noise was between 20% higher and 40% lower. The noise texture (i.e., NPS) was also highly dependent on the background texture for SAFIRE. Therefore, it was concluded that quantum noise properties in the uniform phantoms are not representative of those in patients for iterative reconstruction algorithms and texture should be considered when assessing image quality of iterative algorithms.

The move beyond just assessing noise properties in textured phantoms towards assessing detectability, a series of new phantoms were designed specifically to measure low-contrast detectability in the presence of background texture. The textures used were optimized to match the texture in the liver regions actual patient CT images using a genetic algorithm. The so called “Clustured Lumpy Background” texture synthesis framework was used to generate the modeled texture. Three textured phantoms and a corresponding uniform phantom were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Images were reconstructed with FBP and SAFIRE and analyzed using a multi-slice channelized Hotelling observer to measure detectability and the dose reduction potential of SAFIRE based on the uniform and textured phantoms. It was found that at the same dose, the improvement in detectability from SAFIRE (compared to FBP) was higher when measured in a uniform phantom compared to textured phantoms.

The final trajectory of this project aimed at developing methods to mathematically model lesions, as a means to help assess image quality directly from patient images. The mathematical modeling framework is first presented. The models describe a lesion’s morphology in terms of size, shape, contrast, and edge profile as an analytical equation. The models can be voxelized and inserted into patient images to create so-called “hybrid” images. These hybrid images can then be used to assess detectability or estimability with the advantage that the ground truth of the lesion morphology and location is known exactly. Based on this framework, a series of liver lesions, lung nodules, and kidney stones were modeled based on images of real lesions. The lesion models were virtually inserted into patient images to create a database of hybrid images to go along with the original database of real lesion images. ROI images from each database were assessed by radiologists in a blinded fashion to determine the realism of the hybrid images. It was found that the radiologists could not readily distinguish between real and virtual lesion images (area under the ROC curve was 0.55). This study provided evidence that the proposed mathematical lesion modeling framework could produce reasonably realistic lesion images.

Based on that result, two studies were conducted which demonstrated the utility of the lesion models. The first study used the modeling framework as a measurement tool to determine how dose and reconstruction algorithm affected the quantitative analysis of liver lesions, lung nodules, and renal stones in terms of their size, shape, attenuation, edge profile, and texture features. The same database of real lesion images used in the previous study was used for this study. That database contained images of the same patient at 2 dose levels (50% and 100%) along with 3 reconstruction algorithms from a GE 750HD CT system (GE Healthcare). The algorithms in question were FBP, Adaptive Statistical Iterative Reconstruction (ASiR), and Model-Based Iterative Reconstruction (MBIR). A total of 23 quantitative features were extracted from the lesions under each condition. It was found that both dose and reconstruction algorithm had a statistically significant effect on the feature measurements. In particular, radiation dose affected five, three, and four of the 23 features (related to lesion size, conspicuity, and pixel-value distribution) for liver lesions, lung nodules, and renal stones, respectively. MBIR significantly affected 9, 11, and 15 of the 23 features (including size, attenuation, and texture features) for liver lesions, lung nodules, and renal stones, respectively. Lesion texture was not significantly affected by radiation dose.

The second study demonstrating the utility of the lesion modeling framework focused on assessing detectability of very low-contrast liver lesions in abdominal imaging. Specifically, detectability was assessed as a function of dose and reconstruction algorithm. As part of a parallel clinical trial, images from 21 patients were collected at 6 dose levels per patient on a SOMATOM Flash scanner. Subtle liver lesion models (contrast = -15 HU) were inserted into the raw projection data from the patient scans. The projections were then reconstructed with FBP and SAFIRE (strength 5). Also, lesion-less images were reconstructed. Noise, contrast, CNR, and detectability index of an observer model (non-prewhitening matched filter) were assessed. It was found that SAFIRE reduced noise by 52%, reduced contrast by 12%, increased CNR by 87%. and increased detectability index by 65% compared to FBP. Further, a 2AFC human perception experiment was performed to assess the dose reduction potential of SAFIRE, which was found to be 22% compared to the standard of care dose.

In conclusion, this dissertation provides to the scientific community a series of new methodologies, phantoms, analysis techniques, and modeling tools that can be used to rigorously assess image quality from modern CT systems. Specifically, methods to properly evaluate iterative reconstruction have been developed and are expected to aid in the safe clinical implementation of dose reduction technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are many sociopolitical theories to help explain why governments and actors do what they do. Securitization Theory is a process-oriented theory in international relations that focuses on how an actor defines another actor as an “existential threat,” and the resulting responses that can be taken in order to address that threat. While Securitization Theory is an acceptable method to analyze the relationships between actors in the international system, this thesis contends that the proper examination is multi-factorial, focusing on the addition of Role Theory to the analysis. Consideration of Role Theory, which is another international relations theory that explains how an actor’s strategies, relationships, and perceptions by others is based on pre-conceptualized definitions of that actor’s identity, is essential in order to fully explain why an actor might respond to another in a particular way. Certain roles an actor may enact produce a rival relationship with other actors in the system, and it is those rival roles that elicit securitized responses. The possibility of a securitized response lessens when a role or a relationship between roles becomes ambiguous. There are clear points of role rivalry and role ambiguity between Hizb’allah and Iran, which has directly impacted, and continues to impact, how the United States (US) responds to these actors. Because of role ambiguity, the US has still not conceptualized an effective way to deal with Hizb’allah and Iran holistically across all its various areas of operation and in its various enacted roles. It would be overly simplistic to see Hizb’allah and Iran solely through one lens depending on which hemisphere or continent one is observing. The reality is likely more nuanced. Both Role Theory and Securitization theory can help to understand and articulate those nuances. By examining two case studies of Hizb’allah and Iran’s enactment of various roles in both the Middle East and Latin America, the situations where roles cause a securitized response and where the response is less securitized due to role ambiguity will become clear. Using this augmented approach of combining both theories, along with supplementing the manner in which an actor, action, or role is analyzed, will produce better methods for policy-making that will be able to address the more ambiguous activities of Hizb’allah and Iran in these two regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an economic model of the effects of identity and social norms on consumption patterns. By incorporating qualitative studies in psychology and sociology, I propose a utility function that features two components – economic (functional) and identity elements. This setup is extended to analyze a market comprising a continuum of consumers, whose identity distribution along a spectrum of binary identities is described by a Beta distribution. I also introduce the notion of salience in the context of identity and consumption decisions. The key result of the model suggests that fundamental economic parameters, such as price elasticity and market demand, can be altered by identity elements. In addition, it predicts that firms in perfectly competitive markets may associate their products with certain types of identities, in order to reduce product substitutability and attain price-setting power.